New York State College of Agriculture and Life Sciences a Statutory College of the State University
Cornell University
Department of Natural Resources
Fernow Hall, lthaca, N. Y. 14853-3001

Fishery Science
Forest Science Wildlife Science
Natural Resources
Resource Policy
and Planning
Aquatic Science
MEMO TO: NYAFS Executive Committee and Committee Chairs
FROM: Barbara A. Knuth, Chapter President Fancara

RE:
1991 Annual Meeting
DATE: $\quad 12$ May 1990
At its April meeting, the NYAFS Executive Committee agreed that the theme for the 1991 annual meeting invited paper session would be "Impacts of humaninduced habitat changes on fisheries resources and management". We will strive to integrate both natural and social sciences perspectives into the session. We also would like to attempt to include topics that would be attractive to folks in the marine district. We now need to give Program Committee Chair Bill Gordon some assistance in identifying specific topics and speakers to round out a day's schedule.

Below I have listed some possible topics mentioned at the Executive Committee meeting. Please give some thought to these and other topics or potential speakers you might be able to identify for Bill.

Potential topics and some speaker ideas include:

1. The role of AFS in fostering sound stewardship for fishery habitats. (Larry Nielsen, AFS President)
2. Impacts and recovery of natural resource damages from oil spills. (possibly an attorney and/or scientist from NYS Dept. of Law; biologist from NYDEC and/or New Jersey)
3. Habitat modifications, mitigation strategies and regulatory requirements for hydroelectric facility development. (possibly a DEC or FWS biologist to address effects on fisheries; an environmental consultant or industry biologist to address mitigation strategies; and a representative from FERC to discuss licensing/relicensing requirements)
4. Connecticut River Atlantic Salmon. (a biologist from state or federal government working with salmon recovery team; and an economist who has studied economic values associated with salmon rehabilitation -- Tom Brown of Cornell)

5. Striped bass, and the controversy over regulations based on consideration of recreational fishery, commercial fishery, and human health protection from contaminants.

If you have preferences for or against any of these topics, suggestions for specific speakers for these, or ideas for other topics and speakers, please send your thoughts to Bill Gordon, NYS DEC, P.O. Box 51, Brownville, NY 13615, preferably by the end of June so the Program Committee can begin contacting potential speakers. I would also appreciate receiving a copy of any correspondence with ideas on topics and speakers. The 1991 program agenda will be a topic at our next Executive Committee meeting, sometime in July.

Thanks very much for helping out with your ideas. I look forward to a successful and interesting annual meeting.


```
Earbare kmuth
```



```
Fernowy Hall
Gorriez I Uh|vatsiEy
ZEhacke, New vork i4e5s-3nc!
Dgare Emalos
```



```
membera in am sttempt to get them to pay thelr dues. I paned
```



```
be the cheapest method. Fostal regutations requirea minamum
of 200 blectask for khe bulk rate tmder aur permik. By them
time you edcl Lre the costs for pl゙合ting up covers with outu
meniIng puarmit Du them, plus cogtes of the tetter, plus क0
fake Jetters (mailLed to me) it was cheaper to just lyave my
```


Dotidas.I2.
farts Havise
Becirelairy/Tremstar er


```
y-fu Ehorthy we must remove your mame from the damectorym
```



```
em| the membership dimectary which kem咅= you in touch ws eth
```



```
parti&&ipatimu% in the argamizatugn.
```



```
year far studentis.
Corgial3y,
Jack. Hasse, Searetary/Trgasllcer Moy 7, 1790
E/合 NYGOEN 207 GenEses St. 1H2にあ, NY 1डSO%
ccs 日. Rnushis Ehspkar presuclant
```


Fishery Science

Forest Science
Wildlife Science
Natural Resources
Resource Policy
and Planning
Aquatic Science
April 10, 1990

MEMORANDUM

TO: NYAFS Executive Committee and Committee Chairs/Guests
FROM:
 Assistant Professor of Natural Resource Policy and Management President, New York Chapter AFS

RE:
NYAFS Executive Committee Meeting

A meeting of the New York Chapter American Fisheries Society Executive Committee has been scheduled for 27 April, 1990, 12:30-3:30 p.m. in 238B Emerson Hall on Cornell's campus. Emerson is located between Fernow and Bradfield Halls. The preliminary agenda follows. I've listed specific topics I know of, but I'm sure there are others you will want to discuss for your particular committee or responsibility. If you would like to add any agenda items, just bring those ideas to the meeting. If you are responsible for discussing any of the items listed below and cannot make the meeting, please call Kris Marsh at 607-255-5662, and send me a short summary or description about that topic so I may report to the others.

Note that we will begin discussions about the 1991 annual meeting. Please bring ideas about potential topics for the Friday invited speaker sessions. I will suggest a theme of "Impacts of Habitat Change on Fisheries Resources and Management", and am eager to discuss this and other ideas with the group.

Thanks very much, and good travelling on the 27th!

Enc.

New York Chapter
American Fisheries Society
Executive Committee Meeting

238B Emerson Hall

AGENDA

1. Convene \& Introductions

Barbara Knuth

2. Officer's Reports

Secretary/Treasurer
President

- news from the national office
- Chapter overview

President Elect

- student unit liaison
- Northeast Fish and Wildlife Conference

Auditing
Membership

- membership numbers
- updating form

Environmental Concerns

- High Peaks Citizen Advisory Committee

Resolutions
Newsletter

- budget/funding

Larry Skinner
Hasse/Field
(Knuth)
Bob Kent
(Knuth)
Dieter Busch
Paul Kotila

NEW YORK CHAPTER
 AMERICAN FISHERIES SOCIETY
 EETING LOCATION/FACILITIES EVALUATION

$V=45$; Attended all 3 sites $=31$; Treadway Only $=5$; HI:Trealway $=4$; Beeches; Treadway $=5$
During the past four years, the annual meeting of the Chapter has been held in 3 locations: 1987, Beeches in Rome; 1988 and 1989, Holiday Inn in Binghamton; 1990, Treadway Inn in Owego. To assist future program committees in planning and locating annual meetings, we'd appreciate it if you would take a few minutes to complete the following questions and share with us your perceptions about the suitability of each site.

1. Which NYAFS Chapter meetings have you attended in the past 4 years? (check all that apply)
$\frac{36}{31}$
1987: Beeches, Rome, NY
1988: Holiday Inn, Binghamton, NY
22 1989: Holiday Inn, Binghamton, NY
45 1990: Treadway Inn, Owego, NY
2. How would you rate the meeting rooms used for the oral presentations at each facility? Consider visibility of speakers and screen, amount of work space, type of seating. Circle one response for each facility, where $0=$ don't know; $1=$ poor; $2=$ fair; $3=$ adequate; $4=$ good; $5=$ excellent.
```
n=36 a) Beeches, Rome, NY
\Y 0
n=4y c) Treadway Inn, Owego, NY NY 
```

3. How would you rate the social atmosphere provided at each facility? Consider facilities for informal discussion, small group meetings, social gatherings, conversation, after-hours get-togethers. Circle one response for each facility, where $0=$ don't know; $1=$ poor; $2=$ fair; $3=$ adequate; $4=$ good; $5=$ excellent.

$n=34$ a)	Beeches, Rome, NY	0	1	2	(3)	4	5
$\bar{x}=3.41$							
$n=34$	b) Holiday Inn, Binghamton, NY	0	1	(2)	3	4	5
$\bar{x}=2.47$							
$n=43$ c) Treadway Inn, Owego, NY	0	1	2	3	(4)	5	$\bar{x}=4.19$

4. How would you rate the meals available at each meeting site? Consider food quality, price, accessibility. Circle one response for each facility, where $0=$ don't know; $1=$ poor; $2=$ fair; $3=$ adequate; $4=$ good; $5=$ excellent.

$n=33$	a) Beeches, Rome, NY	0	1	2	3	4	5
$\bar{x}=3.03$							
$n=32$	b) Holiday, Inn, Binghamton, NY	0	1	2	3	4	5
\bar{x}	$=2.69$						
$n=Y 2$ c) Treadway Inn, Owego, NY	0	1	2	$3 \bigcirc$	5	$\bar{x}=3.76$	

5. How would you rate the accommodations at each facility? Consider sleeping arrangements, living comfort, room cleaning service. Circle one response for each facility, where $0=$ don't know; $1=$ poor; $2=$ fair; $3=$ adequate; $4=$ good; $5=$ excellent.
$n=27$ a) Beeches, Rome, NY
$n=29$ b) Holiday Inn, Binghamton, NY
$n=32^{\text {c) Treadway Inn, Owego, NY }}$
$\begin{array}{lllllll}0 & 1 & 2 & 0 & 4 & 5 \\ 0 & =2.74\end{array}$
(OVER)

Meeting Location/Facilities
 Evaluation Comments Received

1. From 9 People: Great dinner, super meeting, excellent price and service.
2. Noisy fans in meeting room at Treadway.
3. Treadway conference liaisons were excellent.
4. Chairs were arranged poorly in Williamsburg Room.
5. Tables in main meeting room need to be spaced so traffic can travel easily at both ends.
6. Treadway waitress giving backrubs was a great idea.
7. Have location rotate yearly, perhaps between DEC regions.
8. None of recent meeting sites are near major airports; creates hardship for some invited speakers and marine district members.
9. Add Friday evening ping pong, pool, or some light gamesmanship.

Fernwood-Limne, Inc.
77 Route 9
Gansevoort, New York 12831
518/793-1282

$$
5 / 5 / 90
$$

Fisheries Management Consulting Limnology Stocking

$$
\begin{aligned}
& \text { To: Jack tasse } \\
& \text { Frow: Tom Field. }
\end{aligned}
$$

CODE OF PRACTICES AND ETHICS

Standards for Professional Conduct
of the
American Fisheries Society

PREAMBLE:

Members of the American Fisheries Society have an obligation to perform their duties in an ethical manner. First and foremost, they accept the obligation to serve and manage aquatic resources for the good of the public as specitied by the Society's North American Fisheries Policy. They accept responsibility for acting ethically in their pursuits and relationships with the general public and associates. They will strive to preserve the dignity of the figheries profession, follow the tenets of the Society's Equal Opportunity Policy. All members of the American Fisheries Society must meet standards of professional conduct as herein established.

STANDARDS

Section I: The Dignity and Integnity of the Profession

Members of the American Fisheries Society shall at all times:

1. Uphold the dignity and integrity of the fisheries profession. They shall endeavor to avoid even the suspicion of dishonesty, fraud, deceit, misrepresentation, or unprofessional demeanor.
2. Cooperate in extending the effectiveness of the fisheries profession by exchanging information and experience with other professionals and students, and by contributing to the work of the professional societies, schools and the scientitio press.
3. Personally approve onily those plans, reports, and other documents for which they had professional responsibility in preparing on supervising and are in agreement with; and

Members of the American Fisheries Society shall at all times:

1. Recognize that contact with the public is a fundamental responsibility, and is required to retain the public's trust. They shall act in an honest manner in dealing with the public.
2. Refrain from expressing publicly an opinion of fisheries subjects unless they are informed as to the facts relating thereto and their training, ability and experience render them professionally qualified to comment on the involved subjects.
3. Express a professional opinion only when it is founded on adequate knowledge and honest conviction when serving as expert witnesses before a court, commission, or other tribunal.
4. Refrain from permitting the publication or communication of biased information, reports, or parts of them in a manner calculated to mislead the public.
provide credit for professional work to those to whom credit is properly due.
5. Recognize that reviews, criticisms, and debates of technical results and conclusions are best conducted in technical forum, such as in the established fisheries press and meetings of technical societies for peer review, and not in public.
6. Recognize the responsibility to expose scientific misconduct through recognized institutional procedures.
7. Practice ethical and established managerial principles in supervision of employees.

Section II. Relationships with Clients and Employers.

Members of the American Fisheries Society shall at all times:

1. Perform services for each client or employer in a professional manner as a faithful agent or trustee.
2. Refrain from advertising in a self-laudatory manner, beyond statements intended to inform prospective clients/employers of qualifications, or in a manner detrimental to fellow professionals and the fisheries resources.
3. Maintain a confidential professional-client/employer relationship except when specifically authorized by the client/employer or required by due process of law to disclose pertinent information. They shall not use such confidence to their personal advantage or to the advantage of other parties, nor shall they permit personal interests or other client/employer relationships to interfere with their professional judgment.
4. Refuse compensation or rewards intended to influence their professional judgment or advice. They shall not permit a person who recommends or employs them, directly or indirectly, to regulate their professional judgment.

Section III. Relationships with the Public.

ZEBRA MUSSEL RESEARCH ANO CONTROL

WHEREAS, the zebra mussel (Dreissena polymorpha) is a recent exotic introduction to the Great Lakes Basin; and

WHEREAS, the expansion of this organism's range is expected to include the major freshwater systems within the Great Lakes Basin; and

WHEREAS, the proliferation of this organism has potential to severely impact the aquatic ecosystems, as we know them, municipal water systems, industrial water use, and power generation; and

WHEREAS, it is imperative that monies be appropriated before the summer of 1990 to monitor zebra mussel reproduction and population expansion.

NOW THEREFORE BE IT RESOLVED, the Northeast Division of the American Fisheries Society, assembled at its 46th Annual Meeting, 10 April, 1990, in Nashua, New Hampshire requests congress support legislation introduced by Representative Henry Nowaki and Senator John Glenn to appropriate monies for zebra mussel research and control.

U.S. FISH AND WILDLIFE SERVICE HYDROPOWER PROGRAM

WHEREAS, there are 147 hydropower projects in the Northeastern United States and 335 hydropower projects nationally which will be subject to relicensing in the 1990 's with no apparent recognition within the U.S. Fish and Wildife Service; and

WHEREAS, the 1981 U.S. Fish and Wildlife Service Mitigation Policy has established procedures for categorizing fish and wildlife habitat values and determining mitigation goals: has adopted the mitigative sequence of the President's Council on Environmental Quality; and has reinforced the need for coordination between federal and state agencles pursuant to the Fish and Wildife Coordination Act; and

WHEREAS, the Electric Consumers Protection Act of 1986 provides the opportunity to protect, restore and enhance fisheries resources in the affected watersheds; and

WHEREAS, the 1988 U.S. Fish and Wildife Service Hydropower Policy effectively limits mitigation opportunjties for fish and wildilfe resources in order to meet the Nation's energy demands; and

WHEREAS, the 1988 U\$ Fish and Wildlife Service Hydropower Policy goal of "to maintain existing habitat value" severely limits the opportunities for restoration of fisheries resources at relicensed hydropower projects, particularly for anadromous fish such as Atlantic salmon and American shad; and

HHEREAS, the U.S. Fish and Wildlife Service has requested public comments on the policy and their role in the federal hydropower licensing program.

THEREFORE BE IT RESOLVED THAT, the Northeast Division of the American Fisheries Society at its 46th Annual Meeting in Nashua, New Hampshire 10 April, 1990. requests that the U.S. Fish and Wildife Service abandon its hydropower policy and continue to employ the 1981 Mitigation Policy in the federal hydropower licensing program.

FURTHER BE IT RESOLVED THAT hydropower licensing be recognized as a high priority program by the U.S. Fish and Wildife Service and sufficiently funded and staffed to allow for full participation nationwide, Specifically, for the Northeast region, the U.S. Fish and Wildlife Service should immediately seek $\$ 1.2$ million from Congress for operations and instream flow research and create 13 additional permanent full-time positions dedicated to the hydropower licensing program.

> American Fisheries Society
> Student Chapter c/o Dr. Neil Ringler
> Environmental and Forest Biology
> SUNY College of Environmental Science and Forestry

Syracuse, New York 13210-2788

As you may already know the formation of a Student Sub-Unit of the New York State Chapter of the American Fisheries Society is underway. The subunit will include the Student Chapter of AFS with approximately 20 active members at S.U.N.Y. College of Ervironmental Science and Forestry, and a representation of students (undergraduate or graduate) throughout the entire state. The Sub-Unit will provide the opportunity for students across Now York to learn about and participate in fisheries related activities. In order to communicate effectively between colleges, ESF will host a quarterly newsletter that will be "jampacked" with information of interest to the biology or fisheries oriented person. This would include information about job opportunities, field trips, speakers, related research, and other campus activities.

Naturally, this newsletter will not function unless there are substantial numbers of students and advisors interested in writing short articles about current research at your school and other local happenings. On the following two pages please find a short questionnaire and an example of the fisheries activities ongoing at ESF. Along with the questionnaire we would appreciate a short paragraph on some of the fisheries activities in progress at your school. This information will be the backbone of our first newsletter. You will receive a copy of each newsletter to duplicate and distribute to interested parties. You can make as many coples as you like to distribute. It would be appreciated if you could get this back to us by April 16. Thank you again for your time and interest.

Name of College

Types of Biology／Fisheries programs

Would your school be willing to submit articles／letters etc．
What would you be interested in reading about in future issues， \qquad
\qquad
\qquad
\qquad

Who to contact at your school（Name，Number，and Address）
\qquad

Ideas for naming the newsletter． e．g．＂Fish Stew＂，＂Hook Line and Sinker＂ \qquad
\qquad
Paragraph on fisheries and related activities．

New York State Department of Environmental Conservation
 Lake Erie Fisheries Unit
 178 Point Drive North
 Dunkirk, New York 14048

Thomas C. Jorllng Commissioner

February 21, 1990

Mr. Jack Hasse
NYSDEC
State Office Building
207 Genessee Street
Utica, NY 13501

Dear Jack:

I believe the attached bill from Joe Leach wraps up our expenses from the 1990 NYC-AFS meeting. We can probably reimburse Dr. Leach in U.S. currency (if it's easier) at the current rate of exchange (\$177 U.S.).

Thanks very much.

Sincerely,

Donald W. Einhouse

DWE/mes

Enclosure

To: EXCOM Members
From: Jack Hasse
Subject: Summary of 1990 Annual Meeting
Date: February 7, 1990

The 1990 NYCAFS annual meeting is history. The following is a quick summary of activities along with a comment or two.

Raffle

The students raised \$430. From the comments I heard, everyone enjoyed this activity and it sure held people for the evening.

T-Shirts

We ordered 90 shirts. We sold 46 and gave one to the hotel hostess as a thank you for helping us out. We took in $\$ 368$ selling the shirts at $\$ 8.00$ each. We need to sell 16 more shirts to cover our costs. The remaining 28 shirts will represent pure profit for the chapter. We sold more blue than yellow shirts.

Attendance
We had 122 people attend the meeting. We normally have 130-150 attendees.

Income

We took in $\$ 2,749$ at registration.

Expenses

Postage	89.95	
Miscellaneous supplies	110.37	
Change (cash box)	100.00	
Awards	150.00	
Past Pres. Cert.	21.50	
Speaker Travel	632.00	
Treadway Inn	$\mathbf{3 , 8 2 5 . 8 4}$	
	$\$ 4,929.66$	
Expenses	$\$ 4,929.66$	
Income	$2,749.00$	
	$\$ 2,180.66$	

EXCOM Members
February 7, 1990
Page 2

This deficit can/will be reduced by the following:

1. Dues rebate from AFS has been earmarked to cover annual meeting expenses. This should be approximately $\$ 100$.
2. Student raffle money could be used to cover expenses of students at meetings. This should be approximately $\$ 400$ 。

Assuming the above, we will have lost approximately $\$ 1,580$ on the annual meeting.

Don Einhouse has made the suggestion we give the program chairman a budget to work with to aid him in putting the program together. I agree with this idea and offer a figure of $\$ 3,000$ as a starting point for discussion.

We also should consider the following to reduce costs:

1. eliminate the band
2. tighter control of speaker expenses who did not attend entire meeting)
3. try and have speakers who have travel monies 150 available
4. eliminate the Saturday AM coffee break 150
5. reduce number of student helpers (suggest 3, not the 5 or 6 we had) (Total) $\frac{100}{\$ 700}$

Other

Resolutions to be voted on by the membership should be available in a typed handout. There was a fair amount of extra confusion during our discussions because people had trouble remembering the exact wording of the resolution.

February 17, 1990

Jack Hesse

NYAFS Secretary/Treasurer
NY Dept. of Environmental Conservation
207 Genesee Street
Utica, New York 13501
Dear Jack:
Please find enclosed a letter from me to Cedar Creek Publishers who donated the prints for this years raffle. I sent them a "thank you" letter a week ago but I mailed it accidentally before I had a chance to obtain a check from you. Please write-out a check for $\$ 35.00$ to Cedar Creek Publishers from the AFS and reimburse your account from our raffle monies. This payment covers the cost of printing and shipping that Doug Stang and I agreed to pay for.

This publishing company has just sent me another set of prints that we can use next year. Once again they are asking for $\$ 35.00$; however, I think we will wait to make a decision on sending them the money now or after next years raffle.

Thanks for the help. If you have any questions, please feel free to give me a call at (607) 255-2838.

Sincerely,

Henry K. Van Offelen
check +137 mailed 2/22/90

February 12, 1990

```
Dr. Barbara Knuth
Cornell University
Department of Natural Resources
Fernow Hall
Ithaca, NY 14853-0188
```

Dear Dr. Knuth:

First, I would like to take this opportunity to congratulate you on the birth of your daughter! As you might have heard, my son arrived the second day of the NYC-AFS Annual Meeting. I departed Owego at midnight on Friday and fortunately arrived in plenty of time for the labor and birth. However, my first recommendation for next year is to select a Program Chair who doesn't have such conflicts! Seriously, I enjoyed preparing the 1990 Program and would be glad to offer some assistance next year.

Based on my experience with our 1990 Program, I would like to propose three ideas that may improve the cost efficiency of running our meeting, without impacting its quality.
1.) Overall Budget - I believe a budget for running the Annual Meeting needs to be established by the executive committee. A budget would provide a valuable framework for the program committee in such decisions as whether to offer transportation expenses for geographically distant speakers, or simply how many speakers can be reasonably secured.
2.) Invited Speaker Expenses - I propose that the executive committee re-assess the guidelines for bearing the expenses of invited speakers who are members of our Chapter of AFS. In the past, I believe invited speakers who belonged to our Chapter defrayed some (or all) of their meeting expenses as a service to our Chapter. I woula suggest offering to pay either one night's lodging or the conference fee. I'm sure the 1990 speakers would have been amenable to this, but my understanding is that our current policy is to offer the full package to all speakers.
3.) Student Participation - This year, the Chapter paid for five students (lodging and conference fees) to assist with projector and lights at a cost of approximately $\$ 300$. Frankly, I do not believe there was enough for five students to do this year for the amount that it cost the Chapter. In some cases, either a student was not aware of the agreement upon arrival or, in other cases, I was not aware of who or where the designated students were until the last moment.

I agree that helping defray costs for students is worthwhile, but we can improve upon the efficiency of this pilot year. As an alternative, perhaps assign the student subunit to identify no more than four students, at least one month prior to the Annual Meeting, and recommend that these students be appointed to the Program Committee. As such, they could help organize and participate in other elements of the meeting (ie. registration, selling AFS shirts, setup and breakdown of posters and projection equipment).

From the Program perspective, I was quite pleased with the Treadway Inn as a new location for our Annual Meeting. Facilities were adequate, costs were quite reasonable, and the Treadway staff were very accommodating to us. Barring any significant dissent indicated by the questionnaires, I believe the Treadway Inn is well suited for hosting our Annual Meetings. Considering that we have now conducted one meeting in their facility, I would expect future meetings to require less effort.

Finally, I have a box of materials for the next program chair, and please feel free to contact me if you have any questions.

Best regards,

Donald W. Einhouse
l 90 Program Committee Chairman
New York Chapter, AFS
DWE/mes

```
cc: J. Hasse
    J. Winter
```

A.L. Aluisio

Levine Lab
Cornell University
Ithaca, New York 14853
Dear Ms. Aluisio:
At the recent New York Chapter American Fisheries Society meeting in Owego, New York, you intended to pay for your registration and membership with a credit card. We are unable to accept that type of payment so you were asked to try and get a cash advance from one of the banks located nearby. You were unsuccessful in this attempt therefore, we allowed you to attend the meeting with the understanding you would send the NYCAFS a check in the amount of $\$ 26$ immediately.

This letter is to serve as a reminder that as of this date we have not recieved your payment. Please send in your payment as we are trying to close our books for this event. Thank you for your attention to this matter.
cordially,

John J. Hasse
Secretary/Treasurer NYCAFS
cc. B. Knuth, president NYCAFS

Reccered payment for $\$ 21$, dues not included

1990 OFFICERS - NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY

PRESIDENT

barbara knuth

PRESIDENT-ELECT

TOM FIELD

SECRETARY-TREASURER

JACK HASSE

Elected at the Annual Meeting of the New York Chapter on January 26, 1990. The Annual Meeting was held at the Treadway Inn, Owego, New York, January 25, 27, 1990.

EXECUTIVE COMMITTEE AND STANDING COMMITTEE CHAIRPERSONS

	Executive Cormittee
President	Barbara Knuth
President-Elect	Tom Field
Secretary	Jack Hasse
Past-President	James Winter
Standing Committee	
Audit/Finance	Larry Skinner
Environmental Concerns	Bob Kent
Membership	Tom Field
Nominating	Jim Winter
Program	Bill Gordon
Resolutions	Dieter Busch
Special Committee	
Professional Incentives	Paul McKeown
Newsletter	Paul Kotila
Student Subunit	Open

PAST PRESIDENTS

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

JOHN GOULD
ROBERT ZILLIOX
UDELL STONE
WILLIAM FLICK
PAUL NETH
ROBERT GRIFFITH
HOWARD LOEB
martin pfeiffer
WILLIAM PEARCE
WILLIAM PEARCE
ROBERT WERNER
C. LAVETT SMITH

BRUCE SHUPP
PHILIP BRIGGS
JOHN GRIM JOSEPH GORSUCH
STEVEN GLOSS
JAMES HAYNES
LAWRENCE SKINNER
gerald barnhart
MICHAEL DUTTWEILER
ROBERT LANGE
FRANK PANEK
JAMES WINTER

MEMBERSHIP LISTING

The names of all members who paid dues for 1989 and/or 1990 through June 28, 1990 are listed alphabetically. The last name appears first on the first line on the left hand side, followed by the first name and initial. Immediately below the name is the member's affiliation; either the member's employer or, for students, the academic institution. An " S " in parentheses indicates that the member is a student. An "*" indicates honorary membership.

The member's home address is given in the second column. If no home address is given the employment or school address is used. In the third column are listed one or two telephone numbers, the number on the first line is the home number and the number on the second line is the business or school number.

In the fourth column a coded number (s) represents the major field of interest of the member. The interpretation of the codes follows:

1. Administration
2. Aquaculture
3. Aquatic biology, ecology (freshwater)
4. Biological controls
5. Benthic organisms
6. Communications (writing, publications, publicity)
7. Exotic species
8. Fish and fishing - general
9. Fish behavior
10. Fish biology - freshwater species
11. Fish biology - marine species
12. Fish biology - estuarine species
13. Fish biology - salmonids and cold-water species
14. Fish biology - warm-water species
15. Fish larvae
16. Fisheries management (population dynamics, habitat improvment, etc.)
17. Genetics
18. Health-medicine, aquatic animals
19. Ichthyology, taxonomy
20. Illustration
21. Impact assessment
22. International fisheries development
23. Legislation and law enforcement
24. Limnology
25. Pesticides
26. Physiology
27. Plankton
28. Pollution
29. Power plants
30. Research
31. Striped bass
32. Sturgeon
33. Toxicology - all phases
34. Water quality - analysis, improvement, etc.
35. Crustaceans
36. Education/Teaching

This directory is for the use of New York Chapter members only and is not to be used for mailing lists, commercial solicitation, etc., without written permission from the chapter.

Page No. 06/28/90			
	NEW YORK CHAPIER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990		
AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
ALOI, MICHAEL	219 W. FIRST STREET	315-635-3516	$8 \quad 10162937$
BWEC INC.	OSWEGO, NY 13126	315-343-7081	89
ALUISIO, A.L. NYSCVM CORNELL	NYSCVM, CORNELL UNIV. ITHAVCA, NY 14853	607-253-3365	18
			89S
ALVERAS, RONALD	82 CARDINAL DRIVE	914-496-9619	8131621
LMS ENGINEERS	WASHINGTONVILLE,NY 10992	914-735-8300	
ANDERSON, JON VERMONT FISH \& GAME	SHELDON, VERMONT 05483	$\begin{aligned} & 802-862-2043 \\ & 802-878-1564 \end{aligned}$	
			89
NYSDEC	RD \#1, BOX 422	914-687-7821	$\begin{array}{llll}8 & 13 & 14 & 16\end{array}$
	STONE RIDGE, NY 12484	914-255-5453	
			90
ARNOLD, STEPHEN NOR. DEVINE \& TARBEL	NORTHROP, DEVINE \&TARBELL		3,8,10-14,16,21,
	500 WASHINGTON AVE	207-775-4495	29×1
	PORTLAND, MAINE 04103		89
AULTMAN, DANA C. SUNY BRACKPORT	276 N. CREEK CROSSING ROCHESTER, NY 14612	716-225-9470	3,10,
			90 S
BACKMAN, THOMAS	RD\#4 BOX 63	717-353-2019	
NAT FISH RES LAB	WELLSBORO, PA. 16901	717-724-3322	
			90
BAGINSKI, KENNETH SUNY ESF	7751 BACK CREEK RD. HAMBURG, NY 14075	716-649-9385	10
			90 S
BAKER, RUSS	P.O. BOX 400	716-876-3862	8
SUNY ESF	HILER BRANCH		.
	BUFFALO, NY 14223		89S
BAKER, RUSS	1037 MADISON ST.	315-426-8044	8
SUNY ESF	SYRACUSE, NY 13210		
			89 S

$\begin{aligned} & \text { Page No. } \\ & 06 / 28 / 90 \end{aligned}$	NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990		
NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
BALDIGO, BARRY ALSC	$\begin{aligned} & \text { BOX 398D RD\#1 } \\ & \text { LEE CENTER, NY } 13363 \end{aligned}$	$\begin{aligned} & 315-337-1559 \\ & 315-357-5152 \end{aligned}$	$\begin{aligned} & 5,21,33,34 \\ & 89 \end{aligned}$
BARNHART, GERALD NYSDEC	50 WOLF RD ALBANY, NY 12233	$\begin{aligned} & 518-692-7349 \\ & 518-457-5691 \end{aligned}$	16 89
BEGLINGER, JANICE KODAK	1727 EXCHANGE ST. ATTICA, NY 14011	$\begin{aligned} & 716-591-1257 \\ & 716-588-6483 \end{aligned}$	33 89
BESSEL, KELLY M. SUNY BRACKPORT	152 MONROE AVE. BROCKPORT, NY 14420		90S
BISHOP, DANIEL NYSDEC	4141 SOUTH STREET MARCELLUS, NY 13108	$\begin{aligned} & 315-673-1257 \\ & 607-753-3095 \end{aligned}$	90
BLAKE, JOHN W NYS POWER AUTHORITY	23 CROSS RIDGE RD. CHAPPAQUA, NY 10514	$\begin{aligned} & 914-238-5441 \\ & 914-681-6384 \end{aligned}$	$\begin{array}{llllll} 2 & 3 & 28 & 29 & 37 & 9 \\ 16 & 21 & & & & \\ 90 & & & & & \end{array}$
BORKO, MARTIN ORANGE CO. CC	BIOLOGY DEPT. ORANGE CO. COMM COLLEGE MIDDLETOWN, NY 10940	$\begin{aligned} & 914-342-1684 \\ & 914-343-1121 \end{aligned}$	$\begin{aligned} & 3,8,36 \\ & 90 \end{aligned}$
BOWSER, PAUL R CORNELL VET MED	AVAIN \& AQU ANIMAL MED CORNELL UNIVERSITY ITHACA, NY 14853	$\begin{aligned} & 607-387-6834 \\ & 607-253-3365 \end{aligned}$	$\begin{array}{lllll} 2 & 18 & 30 & 34 & 36 \\ 90 \end{array}$
BRADWAY, PHIL NYSDAG+MKTS	NYS DEPT. AG. + MAKTS ALBANY, NY 12235	$\begin{aligned} & 518-377-8938 \\ & 518-457-2840 \end{aligned}$	90
BREED, HELEN RETIRED	$\begin{aligned} & \text { R.D. \#3 BOX } 245 \mathrm{~B} \\ & \text { TROY, NY } 12180 \end{aligned}$	518-279-3255	19 89
BRENNAN, RANDALL W.	18-8 BRAEMAR DR. LIVERPOOL, NY. 13090	315-424-7918	$\begin{array}{lllll} 3 & 7 & 16 & 19 & 24 \\ 34 & 35 & & \\ 89 \end{array}$
BRETT, BETTY LOU UNIV. OF ROCHESTER	BIOLOGY DEPT/ U OF R HUTCHISON HALL ROCHESTER, NY 14627	$716-424-4578$ $716-275-3844$	$\begin{array}{llll} 9 & 10 & 17 & 19 \\ 30-36 & \\ 89 & & \end{array}$

NAME
 AFFILIATION

BRIGGS, PHILLIP
NYSDEC
BROTHERS, EDWARD
EFS CONSULTANTS
BROWN, JERRY
EMPIRE FISHERIES

BRUBAKER, HANS CORNELL

BUERGER, ROBERT SUNY CORTLAND

BUNDY, DAVID ONONDAGA C C

BUNNELL, DON CORNELL

BURZ, JUDY SUNY

BUSCH, DIETER US FISH \& WILDLIFE

BUTTNER, JOSEPH SUNY BROCKPORT

CALLAN, MICHAEL ESF SYRACUSE

CARLSON, DOUG NYS DEC

ADDRESS

NYSDEC
SUNY BLDG. 40
STONY BROOK, NY 11794
3 SUNSET WEST, R.D. 7 ITHACA, NY 14850

PO BOX 68
BLISS, NY 14024-0068

CORNELL UNIVERSITY ITHACA, NY 14853

1576 VANDOWSEL RD. CORTLAND, NY 13046

185 ROBINEAU ROAD SYRACUSE, NY 13207

CORNELL BIOLOGICAL FIELD 315-633-9243 5114 SHACKELTON PT. RD. 315-633-9243 BRIDGEPORT, NY 13030

6725 CHILE RIGA CTR RD. CHURCHVILLE NY 14428

3985 HIGHLAND ROAD CORTLAND, NY 13045

BIOLOGY DEPARTMENT SUNY BROCKPORT
BROCKPORT, NY 14420
RD\#1 BOX 227 HILL AVE PINE BUSH, N.Y. 12566

NYS DEC
317 WASHINGTON ST
WATERTOWN, NY 13601
315-785-2262

TELEPHONE

516-751-7900

607-347-4203 607-347-4203

716-322-7777
716-7863315

607-253-0615

	90 S
$607-835-6524$	16
$607-753-4957$	89
$315-472-3657$	
$315-469-7741$	3
	89
$315-633-9243$	$9,10,14,19,32$
$315-633-9243$	89 S
$716-293-2593$	$2,3,34$
	89 S
$607-753-6263$	$1-1013-16$
$607-753-1460$	$21-2433$
	90
$716-637-3069$	$3,5,10,29,34,36$
$716-395-5750$	90
$914-744-2917$	$2,8,16,28,31,34$
$315-442-6418$	

INTERESTS
YEAR PAID

5111216 193035 90

10-15, 19 89
$2 \quad 143034$

89

$90 S$
16
89

89

9,10,14,19,32
89S
2,3,34
89S
1-10 13-16
21-24 33 90

3,5,10,29,34,36
90
2,8,16,28,31,34
89
151636
90

$\begin{aligned} & \text { Page No. } \\ & 06 / 28 / 90 \end{aligned}$	NEW YORK CHAPT AMERICAN FISHERIES MEMBERSHIP DIREC 1990	R SOCIETY ORY	
$\begin{aligned} & \text { NAME } \\ & \text { AFFILIATION } \end{aligned}$	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
CASTANEDA, RAOUL NYS DEC	NYS DEC BLDG 40 SUNY STONY BROOK, NY 11794	$\begin{aligned} & 516-661-3782 \\ & 516-751-7900 \\ & 370 \end{aligned}$	$2,11,16$ 89
CHIOTTI, THOMAS NYS DEC	83 MORRIS ROAD FREEVILLE, NY 13068	$\begin{aligned} & 607-838-3733 \\ & 607-753-3095 \end{aligned}$	101316 89
CHIPMAN, BRIAN D VERMONT FISH \& WILD	111 WEST STREET ESSEX JUNCTION, VT 05452	802-879-6563	101637 89
CHISHOLM, DAVE	5100 HIGHBRIDGE \#26E FAYETTEVILLE, NY 13066	315-637-5465	90
CHYTALO KAREN NYSDEC	BLDG. \#40 SUNY STONY BROOK NYSDEC STONY BROOK, NY 11794	$\begin{array}{ll} 516 & 7513723 \\ 516 & 7517900 \\ 301 & \end{array}$	$\begin{aligned} & 2,21,25,27,28,33 \\ & 34 \\ & 89 \end{aligned}$
CLAPSADL, MARK D. NY. ST. RES. FOUND.	7637 CORBY ROAD HONEOYE FALLS, NY 14472	$\begin{aligned} & 716-624-1470 \\ & 716-395-5750 \end{aligned}$	90
CLIFTON ALBERT JR. AQ. NIAGRA FALLS	701 WHIRLPOOL ST. NIAGRA FALLS, NY 14301	$\begin{aligned} & 716-285-5446 \\ & 716-285-3575 \end{aligned}$	$\begin{aligned} & 3,8,30 \\ & 89 \end{aligned}$
CLOCK, JEFFERY A. CENT. HUD. ELEC+GAS	284 SOUTH AVE ${ }^{2} 12601$	$\begin{aligned} & 914-255-6280 \\ & 914-486-5534 \end{aligned}$	$3,8,15,16,21,29$ 89
COE, TOM SUNY MORRISVILLE	BOX 549 MORRISVILLE, NY 13408	$\begin{aligned} & 315-684-7076 \\ & 315-684-6390 \end{aligned}$	$\begin{array}{llll} 236810 \\ 89 & & & \end{array}$
COLESANTE, RICHARD NYS DEC	118 MILL STREET CONSTANTIA, NY 13044	$\begin{aligned} & 315-623-9475 \\ & 315-623-7311 \end{aligned}$	2315 89
COLQUHOUN, JAMES NYS DEC	56 PAXWOOD ROAD DELMAR, NY 12054	$\begin{aligned} & 518-439-1231 \\ & 518-457-6178 \end{aligned}$	$\begin{array}{llll}3 & 18 & 33 & 34 \\ 89 & & \end{array}$
CONNERS, ELIZABETH ICHTHY. ASSOC.	50 LUDLOWVILLE RD LANSING, NY 14882	607-533-8801	21,24,29

$\begin{aligned} & \text { Page No. } \\ & 06 / 28 / 90 \end{aligned}$			
NEW YORK CHAPTER			
AMERICAN FISHERIES SOCIETY			
MEMBERSHIP DIRECTORY			1990
NAME	ADDRESS	TELEPHONE	INTERESTS
AFFILIATION YEAR PAID			
CORNETT, SCOTT NYSDEC	128 SOUTH ST	716-372-9003	16
	OLEAN, NY 14760	716-372-8676	
			90
COSTANZA, RICHARD ICHTHYOLOGICAL ASSOC	230 LAKE ROAD, APT 4 DRYDEN, NY 13053	$\begin{aligned} & 607-844-4756 \\ & 607-533-8801 \end{aligned}$	
			$24 \quad 28 \quad 36$
			89
COUTU, JAMES D NYS DEC	232 WINSLOW STREET	315-788-3837	10
	WATERTOWN, NY 13601	315-785-2258	
			89
CREAMER, ALLAN E. CORNELL UNIV.	$\begin{array}{lll} \text { RR \#2 BOX } & 183 \\ \text { RIPLEY, NY } & 14775 \end{array}$	$\begin{aligned} & 716-735-4703 \\ & 607-253-7017 \end{aligned}$	2,13,14,16,17,21
			895
CREECH, CLIFF NYS DEC	648 OLD STAGE ROAD GROTON, NY 13073	$\begin{aligned} & 607-898-3965 \\ & 607-753-3095 \end{aligned}$	81013
			90
CROSTON, JAMES A. NYSDEC	P.O. BOX 1051. DUNKIRK, NY 14048	$\begin{aligned} & 716-366-5167 \\ & 716-366-0228 \end{aligned}$	$\begin{aligned} & 310 \quad 13 \quad 14-16 \\ & 1936 \\ & 89 \end{aligned}$
CULLIGAN, WILLIAM NYS DEC	RD\#1 DELANSON, NY. 12053	$\begin{aligned} & 518-895-8337 \\ & 518-45705430 \end{aligned}$	1216
			89
CULP, TERRY R ICHTHYOLOGICAL ASSOC	$\begin{aligned} & \text { P.O. BOX } 249 \\ & \text { STAMFORD, NY } 12167 \end{aligned}$	$\begin{aligned} & 607-652-3408 \\ & 607-652-3563 \end{aligned}$	2129
			90
CULVER, TODD CORNELL	214 FERNOW HALL CORNELL UNIVERSITY ITHACA, NY 14853	$\begin{aligned} & 315-364-8083 \\ & 607-255-5662 \end{aligned}$	16
			89S
DALE, GEORGE FORDHAM UNIV.	BIOLOGICAL SCIENCES FORDHAM UNIVERSITY	$\begin{aligned} & 914-273-9086 \\ & 914-579-2562 \end{aligned}$	$9 \quad 10111219$
	FORDHAM UNIVERSITY BRONX, NY 10458		90
DANIELS, ROBERT A. NYS MUSEUM	NYS MUSEUM	$\begin{aligned} & 518-872-2137 \\ & 518-474-5800 \end{aligned}$	$\begin{array}{ll}3 & 1019\end{array}$
	CEC 3132		
	ALBANY, NY 12230		89
DAVIS, ROBERT	32 FRANCINE RD.	508-880-6020	$\begin{array}{llll}3 & 15 & 1619\end{array}$
C.T.MAINNEERING	RAYNHAM, MA 02767.	617-859-2560	282934
			89

NAME
AFFILIATION

DEGISI, JOE
CORNELL
DEMONG, LEO M
BRANDON ENTER.
DEXTER, PATRICIA SUNY ESF

DIETZ, JONATHAN VERSAR INC

DUNNING, DENNIS
NYS POWER AUTHOR
DUTTWEILER, MIKE
CORNELL UNIVERSI?
EHLINGER, NEIL
NYS DEC RETIRED
EINHOUSE, DONALD
NYS DEC

ELLIOTT, WAYNE NYS DEC

ELROD, JOSEPH USFWS

ENGEL, RONALD SUNY OSWEGO

EVANS, JOSEPH, T. NYSDEC

ADDRESS

5114 SHACKELTON PT. RD BRIDGEPORT, NY 13030

STAR ROUTE BOX 69
PAUL SMITHS, NY 12970

318 ILLICK HALL SUNY COLLEGE OF ESF SYRACUSE, NY 13210

3426 CARRAGE HILL \#102 RANDALLSTOWN MD. 21133

NYS POWER AUTHORITY 123 MAIN ST WHITE PLAINS, NY 10601

345 CODDINGTON ROAD ITHACA, NY 14850

6747 WILLIAMS ROAD ROME, NY 13440

11344 DENNISON RD. SILVER CREEK, NY 14136

6 BRUNNSWICK RD
NEW PALTZ, NY 12561

USFWS
17 LAKE STREET OSWEGO, NY 13126
R.D. 3, BROWN DR. OSWEGO, NY 13126

128 SOUTH ST. OLEAN, NY 14760

TELEPHONE

	90 S
518-327-3529	213
$518-327-3534$	
	90
315-473-5940	13,15
315-470-6743	
	90S
	34
301-964-9200	

INTERESTS YEAR PAID

914-724-3486 23 12-16 21 914-681-6401 2931 89

$$
\text { 607-277-0006 } 1636
$$

$$
607-255-6505
$$

90
315-337-1238 13-18
901
716-965-9799 1416
716-366-0228

914-255-8142 8910 914-255-5453

90
315-342-2227 310131630
315-343-3951
89
315-343-9678 3102427
315-341-3031 3435
90
14,16
716-372-8676

$$
90
$$

O1

14
90

$\begin{aligned} & \text { Page No. } \\ & 06 / 28 / 90 \end{aligned}$	NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990		
NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
EWELL, WILLIAM KODAK	296 CROSS GATES RD. ROCHESTER, NY 14606	$\begin{aligned} & 716-247-3083 \\ & 716-588-4528 \end{aligned}$	$\begin{aligned} & 2,3,18,21,28,30 \\ & 33,34 \\ & 89 \end{aligned}$
FALK, ARTHUR NYSDEC	$\begin{array}{ll} \text { BOX 151A, } & \text { RD \#3 } \\ \text { KINGSTON, } & \text { NY } 12401 \end{array}$	$\begin{aligned} & 914-687-0191 \\ & 914-255-5453 \end{aligned}$	16 89
FARQUHAR, J F III NYS DEC	WATERTOWN SOB 317 WASHINGTON ST. WATERTOWN, NY 13601	$\begin{aligned} & 315-232-2369 \\ & 315-785-2262 \end{aligned}$	$8,10$ 89
FARRELL, JOHN SUNY ESF	300 CORWIN RD. ROCHESTER, NY 14610	$\begin{aligned} & 716-482-4982 \\ & 315-470-6500 \end{aligned}$	90S
FIELD, THOMAS FERNWOOD-LIMNE INC.	77 ROUTE 9 GANSEVOORT, NY 12831	$\begin{aligned} & 518-793-0219 \\ & 518-793-1282 \end{aligned}$	$\begin{aligned} & 21316 \\ & 90 \end{aligned}$
FINKELSTEIN, SAMUEL NYS DEC	$\begin{aligned} & 8 \text { MADLEY LANE } \\ & \text { STONY BROOK, NY } 11790 \end{aligned}$	$\begin{aligned} & 516-751-3926 \\ & 516-751-7900 \end{aligned}$	$\begin{array}{lllll} 1 & 8 & 11 & 12 & 30 \\ 31 & & & \\ 90 & & & & \end{array}$
FLACK, FRANK M. NYSDEC	BOX 212 OLD QUEECHY RD. CANAAN, NY 12029	518-457-1769	$\begin{aligned} & 3,8,10 \\ & 90 \end{aligned}$
FORNEY, JOHN L CORNELL UNIVERSITY	$\begin{aligned} & \text { R.D. } 1 \\ & \text { BRIDGEPORT, NY } 13030 \end{aligned}$	$\begin{aligned} & 315-633-2948 \\ & 315-633-9243 \end{aligned}$	$\begin{aligned} & 16 \\ & \text { D.HON . } \end{aligned}$
$\begin{aligned} & \text { GALATI, JOSEPH } \\ & \text { NYS DEC } \end{aligned}$	93 LAKIN AVE JAMESTOWN, NY 14701	$\begin{aligned} & 716-483-1368 \\ & 716-366-0228 \end{aligned}$	$\begin{aligned} & 3,9,10,16 \\ & 90 \end{aligned}$
GALL, WAYNE K. BUFFALO MUSEUM SCI.	36 ST. MARY'S STREET LANCASTER, NY 14086	716-681-8238 716-896-5200	$\begin{array}{llll} 3 & 5 & 10 & 34 \\ 89 \end{array}$
GARTH, STEPHEN+SUSAN HINCHINBROOKE FISH	$\begin{aligned} & \text { RFD \#1 BOX } 1010 \\ & \text { CHATEAUGAY, NY. } 12920 \end{aligned}$	$518-497-6505$ SAME	$\begin{aligned} & 13,18 \\ & 89 \end{aligned}$
GEORGE, CARL UNION COLLEGE	R.D. 4, WAGNER GLENVILLE, NY 12301	$518-393-0629$ $518-370-6243$	$\begin{array}{lrrrr} 3 & 8 & 9 & 10 & 14 \\ 16 & 18-21 & 24 \\ 90 & & & \end{array}$

Page No. 06/28/90	NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990		
NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
GIGLIOTTI, LARRY M. CORNELL	481 SHAFFER ROAD NEWFIELD, NY 14867	$\begin{aligned} & 607-564-7881 \\ & 607-255-2829 \end{aligned}$	$\begin{aligned} & 6,8,29,36 \\ & 90 \end{aligned}$
GILLESPIE, ROBERT SUNY	56 COTTAGE ST FREDONIA, NY 14063	$\begin{aligned} & 716-679-4214 \\ & 716-673-3374 \end{aligned}$	$\begin{aligned} & 17,21,33 \\ & 90 \end{aligned}$
GLASE, MADELYN S. ICHTHYOLOGICAL ASSOC	50 LUDLOWVILLE RD. LANSING, NY 14882	$\begin{aligned} & 607-564-76-92 \\ & 607-533-8801 \end{aligned}$	$\begin{aligned} & 3,24,27 \\ & 90 \end{aligned}$
GLOO, JAMES CORNELL	5 HAMMOND ST MOHAWK, NY 13407	315-866-1827	$\begin{aligned} & 8,13,23 \\ & 89 \mathrm{~S} \end{aligned}$
GLOSS, STEVEN USFWS-U. OF WYOMING	U. OF WYOMING BOX 3067 UNIVERSITY STATION LARAMIE, WYOMING 82071	307-766-2143	$\begin{array}{llll} 3 & 28 & 33 & 34 \end{array}$ D. HON
GORDON, WILLIAM NYS DEC	$\begin{aligned} & \text { P.O. BOX 51 } \\ & \text { BROWNVILLE, NY } 13615 \end{aligned}$	$\begin{aligned} & 315-639-3847 \\ & 315-785-2254 \end{aligned}$	
			90
GORSUCH, JOSEPH EASTMAN KODAK	132 WYNDHAM ROAD ROCHESTER, NY 14612	$716-621-7678$ $716-588-2140$	$\begin{array}{llll} \begin{array}{llll} 3 & 5 & 27 & 28 \\ 34 & 35 \end{array} \\ \text { D. HON } \end{array}$
GREEN, DAVID CORNELL UNIVERSITY	5114 SHACKLETON PT RD BRIDGEPORT, NY 13030	$\begin{aligned} & 315-855-0301 \\ & 315-633-9243 \end{aligned}$	141619
			90
GREWE, PETER CORNELL UNIV.	DEPT. NAT. RESOURCES FERNOW HALL, CORNELL UNIV ITHACA, NY 14853	$607-272-2774$ $607-255-2838$	2,17 905
GRIFFIN, PAUL J.	90 FENNEC LANE E. AMHERST, NY 14051	716-688-4090	2
			89
GRIM, JOHN NE BIOLOGISTS INC	ONE KERR ROAD RHINEBECK, NY 12572	$\begin{aligned} & 914-876-4786 \\ & 914-876-3983 \end{aligned}$	$\begin{array}{lllll}2 & 3 & 14 & 16 & 17\end{array}$
			90
GROSS, A CHRIS L I LIGHTING CO	12 HARBOR RIDGE DRIVE CENTERPORT, NY 11721	$516-754-3776$ $516-420-6097$	2112119

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990

NAME
AFFILIATION
HSU, HUI-MIN
NYSCVM, CORNELL
HULBERT, PHILIP
NYS DEC

HUMMELL, BLAINE L
ENV RES MGMT INC

HURST, STEPHEN NYSDEC

ISAACS, JACK M NYS DEC

JANOWSKY, WILLIAM SUNY ESF

JIRKA, KURT
ICHTHYOLOGICAL ASSOC
50 LUDLOWVILLE RD.
LANSING, NY 14882
JOHNSON, JIM \& EMILY USF+WS

JOLLIFF, THOMAS NYS DEC
JOSEPHSON, DANIEL

KAHN, AMY SUNY SYRACUSE

KAHN, JAMES R SUNY BINGHAMTON

DEPT. AVIAN, AQUATIC MED ITHACA, NY 14853

231 RILEYVILLE ROAD HOPEWELL NJ 08525

25 PROSPECT TERR, \#1
CORTLAND, NY 13045

RD3 BOX 132J
KINGSTON, NY 12401

310 KENSINGTON RD. SYRACUSE, NY 13210

RD\# 2 BOX 302 J
MIDDLEBURY CENTER PA. 16935

BEDFORD CORNERS ROAD
CAPE VINCENT, NY 13618

BOX 745
OLD FORGE NY 13420

1723 MEADOWBROOK DR.
APT. 5
SYRACUSE, NY. 13224
ECONOMICS DEPARTMENT
SUNY BINGHAMTON

ADDRESS TELEPHONE

CORNELL UNIVERSITY 607-253-3374
R.D. 1, BOX 622 607-278-5490

BINGHAMTON, NY 13901

518-457-6937

914-331-8174
914-255-5453
INTERESTS
YEAR PAID

2,18,30-34,36
905
13
90
$\begin{array}{ll}609-466-2907 & 3131621 \\ 215-524-3641 & 2833\end{array}$
607-756-2234 16
607-753-3095
90
13
89
716-773-1579 8
315-478-4515

607-539-6635 $\quad 5,10,16,21,29$ 607-533-8801

717-376-2335
717-724-3322

315-654-3156 10
315-654-2147

315-369-2143
315-369-6781

315-445-9811 3,16.
315-470-6743
90
607-798-8058
36
607-7772297
89

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990
NAME
AFFILIATION

ADDRESS

KAHNLE, ANDREW NYS DEC

KAZYAK, PAUL
VERSAR INC.
KEELER, SHAWN
NYSDEC
KELEHER, CHRIS
CORNELL UNIVERSITY
KELLER, WALT
NYSDEC
KELSEY, KEVIN
FERNWOOD LIMNE INC
KENNEN, JONATHAN
SUNY ESF
KENT, ROBERT J
NY SEA GRANT
KERR, ROBERT P.
COSPER ENVIR. SERV.

KIRKER, RICHARD

KLINDT, RODGER NYS DEC

KNUTH, BARBARA CORNELL UNIVERSITY

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990
NAME
AFFILIATION

ADDRESS

KOSOWSKI, DAVID NYS DEC
KOTILA, PAUL M
FRANKLIN PIERCE
KRUEGER, CHARLES
CORNELL UNIVERSIT
KURTZ, ROBERT J
US ARMY CORP OF E
KUSS SARAH MARIE
SUNY BROCKPORT

LA MERE, STEVEN
ADIRONDACK ECOL.

LA PAN, STEVEN NYSDEC

LANC TODD ESF

LANDRE, BETSY CORNELL

LANGE, ROBERT NYS DEC

LANTRY, BRIAN
SUNY ESF

LASSOIE, J P CORNELL UNIVERSITY

$\begin{array}{ll} \text { P.O. } & \text { BOX } \\ \text { AVON, } & 154 \\ 14414 \end{array}$	716-226-2907 $716-226-2466$	$\begin{array}{lllll} 3 & 8 & 10 & 13 & 14 \\ 16 & 24 & & \\ 90 & & & \end{array}$
NATURAL SCIENCE DIVISION FRANKLIN PIERCE COLLEGE	$\begin{aligned} & 603-585-6508 \\ & 603-899-5111 \end{aligned}$	$35(64) 3$
RINDGE N. HAMPSHIRE 03461	1470	90
FERNOW HALL CORNELL UNTVERSITY	607-347-4863	$\begin{array}{lllll}5 & 10 & 16 & 17\end{array}$
ITHACA, NY 14853	607-255-2838	
27 SMITH STREET	516-561-6429	8111216
VALLEY STREAM, NY 11580	212-264-3609	2112
		90
361 PILASKI RD. GREENLAWN, NY. 11740		2
		89
S CLIFF AVE ${ }^{\text {TUPPER LAKE, }} 12986$	518-359-9413	2
	518-359-7856	
		89
12 LIMERICK HEIGHTS	315-639-4791	14,15
DEXTER, NY 13634	315-785-2262	90
BOX 122 GROVELAND, NY 14462	315 426-8964	21,24
		905
604 ALBANY ST.		
ITHACA, NY. 14850	607-255-3191	$\begin{aligned} & 1,3,6,21,23,24, \\ & 30,34,36 \end{aligned}$
		90S
34 GRETEL TERRACE BALLSTON LAKE, NY 12019	518-877-6608	1,10,16
	$518-457-6937$	
		90
143 MILES AVE \#5 SYRACUSE, NY 13210	315-476-1732	13
		90S
117 FERNOW HALL	607-564-7258	37
CORNELL UNIVERSITY	607-255-2114	37
ITHACA, NY 14853		89

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990
NAME
AFFILIATION

LAWRENCE, TRACY SUNY ESF

LAZERATION, MARK SUNY BUFFALO

LITWA, MICHAEL
NYS DEC
LONG, JOHN
FWMA BOARD

MAC NEILL, DAVID NY SEA GRANT

```
MACK, ALAN
```

```
NYS DEC
```

MACK, PETER P.E. NYSDEC

MACKEY, MICHELE SUNY FREDONIA

MALCHOFF, MARK
SEA GRANT

MALOUF, ROBERT NEW YORK SEA GRANT

MANCHESTER, ANDREW PAUL SMITHS

MANCRONI, WAYNE C HUDSON G \& E

ADDRESS	TELEPHONE	INTERESTS YEAR PAID
109 CHINOOK DR. SYRACUSE, NY 13210	3154429515	10
		905
982 BASELINE RD GRAND ISLAND, NY 14072	$\begin{aligned} & 716-773-8430 \\ & 716-636-2862 \end{aligned}$	$\begin{aligned} & 2,10,25,28,30,33 \\ & 34,36 \\ & 89 \end{aligned}$
460 17TH STREET W. BABYLON, NY 11704	$\begin{aligned} & 516-957-0983 \\ & 516-420-7640 \end{aligned}$	21131
		89
2259 NIAGARA ROAD NIAGARA FALLS, NY 14302	$716-731-4002$ $716-285-844$	$\begin{array}{lrrrr} 2 & 3 & 6 & 8 & 16 \\ 23 & 10 & 14 & 29 \\ 90 & & & \end{array}$
NY SEA GRANT EXT. SUNY BROCKPORT	$\begin{aligned} & 716-964-7507 \\ & 716-395-2638 \end{aligned}$	$2,3,7,8,10,24,36$
BROCKPORT, NY 14464		90
65 MINER STREET CAMDEN, NY 13316	$\begin{aligned} & 315-245-3965 \\ & 315-337-1390 \end{aligned}$	$\begin{array}{llll} 10 & 13 & 14 & 16 \\ 17 & 34 & & \\ 89 & & & \end{array}$
NYSDEC ROOM 328 50 WOLF RD. ALBANY, NY 12233	$\begin{aligned} & 518-485-8409 \\ & 518-457-3495 \end{aligned}$	34 89
918 ERIE ST. IRVING, NY 14081	$\begin{aligned} & 716-934-7149 \\ & 716-673-3375 \end{aligned}$	
		90S
CORNELL LAB SEA GRANT 39 SOUND AVE	$\begin{aligned} & 516-765-4322 \\ & 516-727-3910 \end{aligned}$	11,36
RIVERHEAD, NY. 11901		90
NEW YORK SEA GRANT	516-689-8074	2
SUNY @ STONY BROOK STONY BROOK, NY 11794	516-632-6905	90
576 RIVERSIDE AVE ELMIRA, NY 14904	607-733-9409	8
		89S
C HUDSON G \& E 234 SOUTH AVE POUGHKEEPSIE, NY 12601	$\begin{aligned} & 914-883-5432 \\ & 914-486-5734 \end{aligned}$	$21,29,30$ 89

NEW YORK CHAPTER
AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990
NAME
AFFILIATION

ADDRESS

MARSDEN, J ELLEN CORNELL UNIVERSITY

MARTIN, V. CYNTHIA C.T. MAIN

MARTINEAU, DANIEL NYSCVM, CORNELL

MATOUSEK, JOHN A L M S ENGINEERS

MATTES, KENNETH FORDHAM UNIV.

MAYACK, DAVID
NYSDEC

MAYNARD, PAUL NYS DEC

MC BRIDE, NORMAN NYS DEC
MC CARTHY, CHARLES
SUFFOLK CO COMM COL

MC CULLOUGH, RUS
NYS DEC
MC DANNELL, GARY
GREAT LAKES LAB

MC KEOWN, PAUL E NYS DEC
FERNOW HALL
CORNELL UNIVERSITY
ITHACA, NY 14853

11 BIRCHWOOD ROAD WILMINGTON, MA 01887

DEPT. AVIAN, AQUAT. MED. CORNELL UNIVERSITY ITHACA, NY 14853

2 JUNE ROAD
CHESTER, NY 10918

37 GOULD AVE. DOBBS FERRY, NY 10522

58 WINEBERRY LANE
BALLSTON SPA, NY 12020

SALMON RIVER HATCHERY
R.D. 1, BOX 1
ALTMAR, NY 13302

STAR ROUTE BOX 16 STAMFORD, NY 12167

SUFFOLK CO COMM COLLEGE
RIVERHEAD, NY 11901

Page No.$06 / 28 / 90$			
	NEW YORK CHA AMERICAN FISHERIE MEMBERSHIP DIR 1990	TER SOCIETY CTORY	
NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
MCLAREN, JAMES B. BEAK CONSULTANTS	12072 MAIN RD AKRON, NY 14001	$\begin{aligned} & 716-631-9975 \\ & 716-542-5544 \end{aligned}$	$\begin{aligned} & 3,5-7,9-16,28,29 \\ & 30-34 \\ & 90 \end{aligned}$
MERCKEL, CHARLES N SUNY BUFFALO	2340 EAST RIVER ROAD GRAND ISLAND, NY 14072	$\begin{aligned} & 716-773-6588 \\ & 716-878-6588 \end{aligned}$	$\begin{array}{lllll} 3 & 5 & 10 & 21 & 24 \\ 25 & 30 & & \\ 89 & & & \end{array}$
MICHALOWSKI, DANIEL SENECA PARK ZOO	2222 ST. PAUL STREET ROCHESTER, NY 14621	$\begin{aligned} & 716-621-3467 \\ & 716-266-6846 \end{aligned}$	$\begin{array}{lllllll}2 & 3 & 7 & 9 & 10 & 19 & 23\end{array}$
			89
MIKLAS, DALE SUNY ESF	200 WALNUT PLACE SYRACUSE, NY 13210	315-478-5302	16
MILLER, DAVID FERNWOOD-LIMNE	BOX 77, ROUTE 9 GANSEVOORT, NY 12831	518-793-1282	89S
			16
			89
MILLER, LAWRENCE N HAMPSHIRE $F \& G$	REG 1 FISHERIES BOX 241 N. LANCASTER NH. 03584	$\begin{aligned} & 603-636-2615 \\ & 603-788-3164 \end{aligned}$	16 89
MILLS, EDWARD CORNELL UNIVERSITY	CORNELL FIELD STATION R.D. 1 BRIDGEPORT, NY 13030	$\begin{aligned} & 315-655-8569 \\ & 315-633-9243 \end{aligned}$	324 89
MONTELEONE, SUSAN SUNY FREDONIA	ENVIR. RES. CENTER SUNY FREDONIA FREDONIA, NY 14063	716-673-3375	3,30 90 S
MOORADIAN, STEPHEN NYS DEC	104 PARK STREET OLEAN, NY 14760	$\begin{aligned} & 716-373-2494 \\ & 716-372-8676 \end{aligned}$	$\begin{array}{lllll}3 & 9 & 13 & 14 & 16\end{array}$
			89
MOREHOUSE, DAVID NY AQUACULTURE ASSOC	PO BOX 212 AURORA, NY 13026	$\begin{aligned} & 315-364-8429 \\ & 315-568-8520 \end{aligned}$	2
MUCCIO, NEIL CSH FISH HATCHERY	3129 MORGAN DRIVE WANTAGH, NY 11793	516-731-8774	90
			2,3,8-10,13,14,
			89
MURPHY STEVEN P. ICHTH. ASSOC.	$\begin{aligned} & \text { P.O. BOX } 55 \\ & \text { SKANEATELES, NY } 13152 \end{aligned}$	$\begin{aligned} & 315-685-7942 \\ & 315-428-3493 \end{aligned}$	10-16, 34,5
			89

Page No. 16
$06 / 28 / 90$

NAME
AFFILIATION

MURPHY, MARGARET SUNY ESF

MURRAY, RIVA KAREN
CESF

MYERS, ROBERT
SOIL CONS SERV

NACK. STEVE CORNELL

NEMECEK, RUSSELL O.C.W.Q.M.A.

NETH, PAUL NYS DEC RET.

NETTLES, DAVID C NORTH COUNTRY C.C.

NEUDERFER, GARY NYS DEC
NEWELL, ARTHUR
NYS DEC
O'BOYLE, ROBERT J
EASTMAN KODAK

O'GORMAN, ROBERT USFWS

OLNEY, LOUIS MORRISVILLE AT

ADDRESS

TELEPHONE

242 ILLICK HALL 315-474-3944
SUNY ESF SYRACUSE, NY 13210

RD 85 A
CANAAN, NY 12029
R.D. 2, NEW BOSTON ROAD CHITTENANGO, NY 13037

5114 SHACKELTON PT. RD. BRIDGEPORT, NY. 13030

H-4 SPRUCE TREE CIRCLE LIVERPOOL, NY 13090
R.D. 5, JUNIPER DRIVE BALLSTON SPA, NY 12020
P.O. BOX 184

VISTA DRIVE
BLOOMINGDALE, NY 12913
45 NORMAN DRIVE
ROCHESTER, NY 14623
R.D. I, BOX 71

WESTERLO, NY 12193
HAEL/ETS, B-306
KODAK PARK
ROCHESTER, NY 14650

USFWS
17 LAKE STREET
OSWEGO, NY 13126
ROCKS ROAD, BOX 247
MORRISVILLE, NY 13408

TELEPHONE	INTERESTS YEAR PAID
315-474-3944	
	905
$\begin{aligned} & 518-794-8059 \\ & 315-470-6743 \end{aligned}$	31030
	89S
$\begin{aligned} & 315-687-9432 \\ & 315-423-5212 \end{aligned}$	16
	90
$\begin{aligned} & 518-828-2276 \\ & 315-633-9243 \end{aligned}$	10
	89S
$\begin{aligned} & 315-652-5501 \\ & 315-425-2616 \end{aligned}$	$\begin{aligned} & 3,5,11,16,21,24 \\ & 28,29,34 \\ & 90 \end{aligned}$
$\begin{aligned} & 518-885-7792 \\ & 518-457-5698 \end{aligned}$	$1 \begin{array}{llll}1 & 13 & 14 & 16\end{array}$
	89
$\begin{aligned} & 518-891-2110 \\ & 518-891-2915 \end{aligned}$	10,13,36
	90
$\begin{aligned} & 716-424-4926 \\ & 716-226-2466 \end{aligned}$	$\begin{array}{llllll} 3 & 5 & 10 & 13 & 14 \\ 28 & 33 & 34 & \\ 89 & & & \end{array}$
$\begin{aligned} & 518-797-1769 \\ & 518-458-1769 \end{aligned}$	$\begin{array}{llll}3 & 33 & 34\end{array}$
	90
$\begin{aligned} & 716-467-4087 \\ & 716-588-2151 \end{aligned}$	33
	89
$\begin{aligned} & 315-343-2351 \\ & 315-343-3951 \end{aligned}$	1016
	89
$\begin{aligned} & 315-684-3448 \\ & 315-684-6237 \end{aligned}$	$\begin{array}{lllll}2 & 9 & 10 & 13 & 14\end{array}$
	$\begin{array}{ll} 16 & 19 \\ 89 & \end{array}$

$\begin{aligned} & \text { Page No. } 17 \\ & 06 / 28 / 90 \end{aligned}$	NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990		
			-
NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
OLSOGG, REX SUNY FREDONIA	317 W. MAIN FREDONIA, NY 14063	716-672-8407	
			905
OSTERBERG, DONALD SUNY POTSDAM	20 GROVE STREET POTSDAM, NY 13676	$\begin{aligned} & 315-265-8971 \\ & 315-267-2261 \end{aligned}$	$310 \quad 30 \quad 36$
			90
OWENS, RANDELL USFWS	17 LAKE ST. OSWEGO, NY 13126	$\begin{aligned} & 315-343-1401 \\ & 315-343-3951 \end{aligned}$	$\begin{array}{llllll} 3 & 7 & 8 & 13 & 16 & 24 \\ 30 & & & & \\ 90 & & & & \end{array}$
PADILLA, MIGUEL FORDAHAM LAW	15 MARBLE HILL AVE BRONX, NY 10463	212-562-5394	$\begin{array}{lllll}7 & 8 & 12 & 23 & 31\end{array}$
			89
PANEK, FRANK NYS DEC	$\begin{aligned} & 17 \text { FERN ROAD } \\ & \text { ROCKY POINT, NY } 11778 \end{aligned}$	$\begin{aligned} & 516-821-0357 \\ & 516-751-1596 \end{aligned}$	116
			89
PAPPANTONIOU, ANTON H H LEHMAN COL	BIO SCIENCE LEHMAN COLLEGE BRONX, NY 10468	$\begin{aligned} & 212-796-1660 \\ & 212-960-8240 \end{aligned}$	$\begin{aligned} & 9,10,19 \\ & 89 \end{aligned}$
PASSE, JONATHAN CORNELL	510 E. SENECA ST. ITHACA, NY 14850	607-277-6404	1,16,30
			90 S
PEARCE, WILLIAM NYS DEC RET.	BOX 541 CAPE VINCENT, NY 13618	$\begin{aligned} & 315-654-2833 \\ & 315-654-2147 \end{aligned}$	39
PEARSALL, WEBSTER MAINE DEPT ENV. PRO.			D. HON.
	70 ELM ST. GARDINER, MAINE 04345	$\begin{aligned} & 207-582-6622 \\ & 207-289-7649 \end{aligned}$	$\begin{array}{llllll} 3 & 8 & 14 & 16 & 21 & 24 \\ 28 & & & & \\ 90 & & & & \end{array}$
PERKINS, DAVID CORNELL	FERNOW HALL CORNELL UNIVERSITY ITHACA, NY 14850	$\begin{aligned} & 607-844-3185 \\ & 607-255-8231 \end{aligned}$	$\begin{aligned} & 3,8,9,16,17 \\ & 90 \mathrm{~S} \end{aligned}$
PERROTTE, WILLIAM MARIST COLLEGE	BIO. DEPT. MARIST COLLEGE POUGHKEPSIE, NY 12601	$\begin{aligned} & 914-266-4597 \\ & 914-471-3240 \\ & \mathrm{X} 228 \end{aligned}$	$\begin{aligned} & 3524 \\ & 89 \end{aligned}$
PETERSON, ALLEN	FORD ROAD, RD\#1 OWEGO, NY 13827	$\begin{aligned} & 607-729-2551 \\ & 2393 \end{aligned}$	90

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990

| NAME | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AFFILIATION | ADDRESS | TELEPHONE | INTERESTS |
| YEAR PAID | | | |

NEW YORK CHAPTER
AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990

NAME AFFILIATION	ADDRESS	TELEPHONE	INTERESTS YEAR PAID
RENYAAN, SAMUEL SUNY	BIOLOGY DEPARTMENT SUNY BROCKPORT BROCKPORT, NY 14420	716-637-6033	$\begin{aligned} & 2,9,30,36,37 \\ & 89 \mathrm{~S} \end{aligned}$
RICHARDSON ALICE ICHTHYOLOGICAL ASSOC	517 WEST MULLIN ST. WATERTOWN, NY 13601	$\begin{aligned} & 315-785-1956 \\ & 607-533-8801 \end{aligned}$	
RICHARDSON, DENISE NYS DEC	225 S CLINTON ST CARTHAGE, NY 13619	$\begin{aligned} & 315-493-0713 \\ & 315-785-2262 \end{aligned}$	90
			89
RIFORGIAT, MARK R\&S ENVIR. INC.	MATHEWS RD PORTLAND, NY. 14769	716-7924521	21,25,37
			90
RINGLER, NEIL SUNY SYRACUSE	19 GETTMAN DRIVE BALDWINSVILLE, NY 13027	$\begin{aligned} & 315-638-8128 \\ & 315-470-6770 \end{aligned}$	$\begin{array}{llllll}3 & 5 & 9 & 13 & 19 & 36\end{array}$
			90
ROBINS, JEFFREY NYS DEC	31 POMEROY STREET CORTLAND, NY 13045	$\begin{aligned} & 607-756-8137 \\ & 607-753-3095 \end{aligned}$	16
			90
ROUGH, GAYLORD ALFRED UNIVERSITY	88 S MAIN STREET ALFRED, NY 14802	$\begin{aligned} & 607-587-9161 \\ & 607-871-2205 \end{aligned}$	310
			90
SALZ RONALD NYSDEC	MARINE RESOURCES BLDG 40 STONY BROOK NY 11794	$\begin{aligned} & 516-4744963 \\ & 516-7517900 \end{aligned}$	16
			90
SANFORD, STEPHEN SANFORD'S BAIT FARM	7636 EAST PORT BAY RD WOLCOTT, NY 14590	$\begin{aligned} & 315-594-8925 \\ & \text { SAME } \end{aligned}$	10,34,35

SCHARA WILLIAM M.	HC 78 BOX 1154		
			90
SCHIAVONE, ALBERTNYS DEC	NYS DEC		
	317 WASHINGTON STREET	$\begin{aligned} & 315-658-2652 \\ & 315-785-2266 \end{aligned}$	101416
	WATERTOWN, NY 13601		90
SCHLENK, CORNELIA SEA GRANT	SEA GRANT, DUTCHESS HALI SUNY AT STONY BROOK STONY BROOK, NY 11794	516-632-6905	
			1,16,30
			89

Page No. 21	
$06 / 28 / 90$	
	NEW YORK CHAPTER
	AMERICAN FISHERIES SOCIETY
	MEMBERSHIP DIRECTORY
	1990

NAME
AFFILIATION

ADDRESS

TELEPHONE	INTERESTS
	YEAR PAID

SKINNER, LAWRENCE
NYS DEC
SMITH, C LAVETT
AMER MUSEUM NAT
SMYTHE, A GARRY
BIO SONICS, INC

SOHACKI, LEONARD
SUNY ONEONTA
SOULE, NORMAN
CSH FISH HATCHERY
SPAGNOLI, JOHN J
NYS DEC

SPRINGER, CHRISTINE
CORNELL
STANG, DOUGLAS
NYSDEC
STEWART, DONALD
SUNY ESF
STORONSKY, MICHAEL
SEAR-BROWN ASSOC.

SUTHERLAND, CARY SUNY ESF TAORMINA, ANTHONY NYSDEC

NEW YORK CHAPTER
 AMERICAN FISHERIES SOCIETY
 MEMBERSHIP DIRECTORY 1990

NAME
AFFILIATION
THIESING, MARY A.
U.S.A. CORPS ENGIN
TREMBATH, WILLIAM
SUNY
TUTTLE, L RAYMOND
VAAS, C RANDY
NYS DEC
VAN DEVALK, TONY
CORNELL

ADDRESS

8 FRANKLIN AVE
APT 4
PEARL RIVER, NY. 10965
4104 N. BOSTON RD.
EDEN, NY. 14057
STERRY DRIVE, R.D. 1
BOX 281 N
GREENE, NY 13778
NYS DEC
317 WASHINGTON STREET
WATERTOWN, NY 13601
5114 SHACKELTON PT. RD.
BRIDGEPORT, NY 13030

5120 FOX RD RD\#2
PALMYRA, NY 14522
315-597-2683
3930 STESSON CIRCLE
SYRACUSE, NY. 13215

1329 BALCOM AVE.
BRONX, NY 10461
R.D. 1 BOX 543

HOMER, NY 13077

409 WESTCOTT ST. SYRACUSE, N Y 13210

$914-620-0642$	$3,9,10$,
$212-579-2562$	90
$716-648-0881$	
$716-673-3375$	3

INTERESTS YEAR PAID

$$
716-673-3375
$$

$$
\begin{array}{lllll}
607-656-8702 & 10 & 29 & 33 & 34 \\
607-729-2551 & 89 & & &
\end{array}
$$

$$
\text { 315-788-7225 } 3,10,16,21
$$

89S

607-255-3191

516-567-1738
516-751-7900
89
TELEPHONE
716-648-0881

$$
90 \mathrm{~S}
$$

315-785-2246

$$
90
$$

$$
315-633-5388 \quad 8
$$

$$
315-633-9243
$$

607-273-5770 9,13,17

1251116
90S

90 S
315-488-6525 16, 36
607-255-2832
89
212-892-7983 3111219
212-960-8239
89S
607-749-3292 3 8-10 1314
607-753-3095 16 90

315-426-8964

Page No. 23 06/28/90

NAME
AFFILIATION

WERNER, ROBERT
SUNY SYRACUSE

WIDMER, CARL C NYS DEC

WILKINS, BRUCE
CORNELL
WILKINSON, MICHAEL NYS DEC

WINTER, JAMES SUNY FREDONIA

WISNIEWSKI, STEVEN SUNY ESF

WOLFE, MARILYN EXPTL PATHOL LAB

WOLTMAN, EDWARD NYS DEC

WOOSTER, GREGORY CORNELL UNIVERSITY

NEW YORK CHAPTER AMERICAN FISHERIES SOCIETY MEMBERSHIP DIRECTORY 1990

ADDRESS	TELEPHONE	INTERESTS YEAR PAID
R.D. 3, TRACY DRIVE	315-673-4272	$\begin{array}{llll}3 & 10 & 14 & 15\end{array}$
SKANEATELES, NY 13152	315-470-6804	24
6772 ITALY VALLEY ROAD	716-374-5048	1316
NAPLES, NY 14512	716-226-2466	
		89
FERNOW HALL	607-255-8216	3637
CORNELL UNIVERSITY	607-255-2162	
ITHACA, NY 14853		89
44 PAUL DRIVE		310 13-16
AMHERST, NY 14120	716-847-4550	2489
SUNY FREDONIA	716-672-2665	316
ENVIRON. RES. CENTER	716-673-3374	
FREDONIA, NY 14063		90
116 HOOD AVE.TREET	315-471-1392	371330
SYRACUSE NY 13208	315-470-6743	
		90S
EXPTL PATHOL LAB INC	703-4446579	1833
BOX 474	703-4717060	
HERNON, VIRGINIA 22070		90
164 ASBURY AVENUE	516-869-2102	$\begin{array}{lllll}4 & 7 & 10 & 14 & 24\end{array}$
CARLE PLACE, NY 11514	516-457-9436	$\begin{array}{ll} 27 & 34 \\ 90 & \end{array}$
AVIAN \& AQUA ANIMAL MED	607-272-5274	$\begin{array}{lllll}2 & 18 & 22 & 30 & 34\end{array}$
CORNELL UNIVERSITY	607-253-3365	
ITHACA, NY 14853		90

CONTRIBUTED PAPERS \& POSTERS

$$
1990 \text { Annual Meeting }
$$

New Yorkchapter, American fisheries society

EVALUATION OF MONOCLONAL ANTIBODY-BASED ELISA FOR THE DIAGNOSIS OF RENIBACTERIUM SALMONINARUM Hui-Min Hsu, Paul R. Bowser, and John H. Schachte Jr. Cornell University, Ithaca

A monoclonal antibody-based ELISA was developed for the diagnosis of bacterial kidney disease (BKD) which can detect a minimum of 0.05 - 0.1 $\mathrm{ug} / \mathrm{ml}$ of R . salmoninarum antigen. During the $1988-89$ spawning season, sixty coho salmon (Oncorhynchus kisutch), sixty chinook salmon (o. tshawytscha) and sixty steelhead trout (0 . mykiss, Great Lakes rainbow trout) were screened for BKD using the developed ELISA and a direct fluorescent antibody test (FAT). Serum agglutination titers for R. salmoninarum were measured to determine any relationship between presence of antigen (R. salmoninarum bacterium) and humoral antibody to R. salmoninarum. Twelve of the sixty coho salmon, forty-eight of the sixty chinook salmon and six of the sixty steelhead trout were found BKD-positive by ELISA. Only one steelhead trout was found BKD-positive by FAT while none of the coho or chinook salmon were to be BKD-positive. It was concluded that the monoclonal antibody-based ELISA was more sensitive than FAT. Antibody titers of these asymptomatic fish were variable. There was no correlation between the antigen level and the antibody titer.

HIGH EFFICIENCY-LOW COST EGG AND FRY INCUBATION SYSTEMS FOR SMALL EXPERIMENTAL LOTS
 Dwight W. Herren, Charles Krueger, and Bernie May Cornell University, Ithaca

High efficiency-low cost incubations systems were designed for producing small experimental lots of fish. This horizontal design, coupled with tightly fitted egg containers, enhances water flow within each egg chamber which increases oxygenation, cleansing, deployment of egg treatments and ultimately survival.

Egg incubators consist of egg holders and a trough. Holders are constructed from 3" PVC pipe, 3" PVC coupling, and fiberglass window screen. Troughs consist of a section of Plastmo ${ }^{T M}$ round bottom rain gutter with end plates. Twenty l6-unit gutters can be placed in a 4'x8' area. A 16 gutter system can be placed on a wall covering a $7^{\prime} x 8^{\prime}$ area, $8^{\prime \prime}$ deep. The cost for a 16 gutter system (256 individual treatments) is $\$ 325$ and requires 30 hours to construct.

Fry incubation system consists of a modified 5 gallon plastic bucket. The drain system uses a $3^{\prime \prime}$ PVC standpipe friction fit into a modified PVC toilet flange affixed around a $3.5^{\prime \prime}$ hole in the bottom of the bucket. A screened, 4" PVC drain pipe draw tube covers the standpipe. A 20 unit system can be placed in a $4^{\prime} \times 8^{\prime}$ area. The cost for a 20 circular system is $\$ 300$ and requires 8 hours to construct.

AN AGGREGATE HISTORICAL COMPARISON OF THE VARIABILITY OF LC 50 VALUES FOR TWO REFERENCE COMPOUNDS AND EIGHT FRESHWATER SPECIES

W. S. Ewell and R. J. O'Boyle
Eastman Kodak Company, Rochester

The relative merits of Thymol and Sodium Dodecyl ("Lauryl") Sulfate for use as reference compounds (positive controls) in acute aquatic effects testing are evaluated. The L_{50} values calculated for these two compounds and eight freshwater species as part of an on-going program over a period of seven years are compared through statistical analyses. Routine multispecies exposures to reference compounds are performed in an attempt to monitor changes in inherent sensitivity in each of the aquatic animal colonies maintained for up to a decade within the laboratory. The eight freshwater species exposed as part of this study are: Pimpephales promelas (fathead minnow); Caecidotea intermedia (pillbug); Lumbriculus variegatus (aquatic earthworm); Dugesia dorotocephala (flatworm); Gammarus fasciatus (sideswimmer); Planorbella trivolvis (ramshorn snail); Daphnia magnar and Ceriodaphnia dubia (both daphnids). The aggregate historical data are examined for shifts in dose-response per species over time, as well as endpoint variability or differences between the two reference compounds within a species.

HABITAT SUITABILITY INDEX CURVES FOR STREAM DWELLING JUVENILE BROOK TROUT IN NORTHERN NEW YORK STATE
Kurt J. Jirka and John Homa, Jr. Ichthyological Associates, Inc., Lansing

Habitat suitability index curves for juvenile ($<100 \mathrm{~mm}$ total length) brook trout (Salvelinus fontinalis) were developed as part of an instream flow investigation sponsored by Niagara Mohawk Power Corporation at its Beaver River Hydroelectric Project in northern New York State. The habitat variables for which curves were developed include water velocity, water depth, water temperature, and substrate. The curves were developed using the Delphi method, a consensus-generating exercise utilizing a panel of experts on the subject of interest. A literature review on juvenile brook trout habitat use and preference was conducted in conjunction with the Delphi exercise. Information gathered from the literature was compared to the curves generated from the Delphi exercise for points of agreement and disagreement.

In general, the curves developed through the Delphi exercise were in agreement with the literature. Suitable focal velocities for stream-dwelling juvenile brook trout, as defined by the Delphi curves, ranged from 0.00-1.50 $f t / s$, with an optimal range of $0.20-0.70 \mathrm{ft} / \mathrm{s}$. Suitable water depths ranged from 0.20-3.00 ft, with optimal depths of $0.60-1.33 \mathrm{ft}$. Water temperature suitable for prolonged juvenile brook trout survival ranged from 0.0-24.0 C. Optimal temperatures were in the $11.0-16.0 \mathrm{C}$ range. Gravel was identified as the most suitable substrate, followed by cobble.

DEVELOPMENT OF HABITAT SUITABILITY INDEX CURVES FOR SELECTED TAXA OF BENTHIC MACROINVERTEBRATES USING THE DELPHI METHOD
 Kurt J. Jirka and John Homa, Jr.
 Ichthyological Associates, Inc., Lansing

Habitat suitability index curves for six genera of benthic macroinvertebrates and the benthic macroinvertebrate community as a whole were developed as part of an instream flow investigation sponsored by Niagara Mohawk Power Corporation at its Beaver River Hydroelectric Project in northern New York State. The curves for the mayfly genus Baetis, the caddisfly genus Hydropsyche, and the blackfly genus simulium are presented here. Habitat variables for which curves were developed include water velocity, water depth, and substrate. The curves were developed using the Delphi method, a consensus-generating exercise utilizing a panel of experts on the subject. Curves generated from the Delphi exercise were evaluated by comparison with information in the scientific literature.

In general, the curves developed through the Delphi exercise agreed with information in the literature. Optimum water velocities (within six inches of the substrate) ranged from 1.00-3.50 ft/s for Baetis, 1.14-2.45 ft / s for Hydropsyche, and $0.80-3.60 \mathrm{ft} / \mathrm{s}$ for Simulium. Optimum water depths ranged from 0.30-2.00 ft, 0.25-3.00 ft, and 0.2-2.50 ft for Baetis, Hydropsyche, and Simulium, respectively. Cobble was identified as the most suitable substrate for all three genera, followed by boulder. Bedrock was also rated as highly suitable for Simulium.

> REMEDIAL ACTION PLANNING IN THE GREAT LAKES BASIN: AN OPPORTUNITY FOR FISHERY MANAGEMENT INTERESTS Betsy Kiernan Landre and Barbara A. Knuth Cornell University, Ithaca

Remedial Action Planning is a regional approach to planning for the cleanup of the 42 most polluted locations in the Great Lakes Basin. Known as the Areas of Concern, these 42 locations, situated mainly along rivers and in harbors, are recognized for especially poor water quality. Remedial Action Planning is coordinated by the International Joint Commission (IJC), yet the planning is carried out at the local level with the assistance of state, provincial, and, in some cases, local and federal agencies. Two tenets underlie the planning process: an ecosystem approach and broad-based public participation.

Remedial Action Planning stands out among environmental management programs in the Great Lakes Basin as an opportunity for diverse interests to work together in a consensually-based decision-making process to influence remediation of polluted Areas and restore beneficial resource uses of the Lakes. As such, fishery management agencies have a stake in Remedial Action Planning.

A recent survey of Remedial Action Plan (RAP) coordinators in each Area reveals a composite picture of progress to date. Fish communities are highly affected in 86% of the Areas. In 34 cases, efforts have been made to involve fishery groups in the planning process. The ultimate benefits of the involvement of these groups are to the Great Lakes fishery resources.

Abstract

ICHTHYOLOGY COLLECTION, NEW YORK STATE MUSEUM Robert A. Daniels Biological Survey Laboratory, Troy Museum collections can serve as valuable resources for disciplines as diverse as taxonomy, natural history, toxicology and pathology. The fish collection at the New York State Museum has recently undergone a number of major changes that will, ulitmately, facilitate its use. The entire collection was moved to a new facility with superior storage and laboratory space. Information on the specimens in the collection is currently being transferred to a new data-base-management system, called MUSE. An inventory of the entire collection is finished and the cataloguing process should be completed by early Spring. In this poster, I hope to introduce you to some of the interesting information associated with the collection, some of its strongest features and some of the uses for which the collection can be used. I encourage all of you to familiarize yourself with this collection and make it a part of your research and management programs.

Data collected on a population of Notropis amoenus from the Shawangunk Kill indicate that this species has a number of broad similarities in life history to other Notropis species with which it commonly co-occurs. Spawning in N. amoenus typically begins later in the season than for other populations of syntopic cyprinids, with recruitment of young of the year fish occurring largely in late August. The post-larval juveniles had a growth coefficient which was not significantly different than 3 , indicating isometric growth following recruitment to the population. The overall form of growth for the population, however, is allometric, with $b=2.64 \pm 0.07$, indicating that body form becomes increasingly more slender with age.

Juvenile fish ($0+-1+$) select sandy bottomed habitats having a moderately rapid current speed and commonly co-occur with other species. Adults ($2+$) are more likely to occur in monospecific aggregations in rocky-bottomed riffle habitats. The age of breeding adults was $2+$ years; for this population, no older specimens were collected.

Comparisons of feeding habits of groups of N. amoenus collected from areas in which this organism is found in association with other species and when it is found alone, indicate that differences in food choice appear to be age related rather than a function of competition. Juveniles feed on a wide variety of prey items, while adults appeared to rely more on benthic items. Seasonal differences in the adult diets, however, indicate that this species is capable of utilizing a wide variety of prey at any age, and that utilization patterns for a given age group vary with season.

CULTURE OF FINGERLING WALLEYE FOR INTRODUCTION INTO LAKE ONTARIO AND POTENTIALLY OTHER APPROPRIATE PUBLIC WATERS
 Joseph K. Buttner and David B. MacNeill
 SUNY Brockport, Brockport

In 1989 over 85,000 fingerling walleye (Stizostedion vitreum, mainly $35-125 \mathrm{~mm}$ TL) were cultured in eastern ponds and introduced into bays and tributaries of Lake Ontario. The walleye enhancement and restoration effort, now in its fourth year, has produced and stocked nearly 190,000 fingerling walleye since 1986. The cooperative effort is possible through the on-going and close collaboration of six angler associations (Black Lake Fish and Game Club, Fairhaven Federation of Sportman's Clubs, Niagara River Angler's Association, Port Bay Improvement Association, Orleans County Federation of Sportman's Club, and Walleyes for Wayne County), the NYS Department of Environmental Conservation, NY sea Grant, and SUNY Brockport. Members of each angler association provide for the daily maintenance and care of the walleye while they are being cultured in ponds. Four associations followed guidelines closely and experienced survivals $>50 \%$ of stocked fry. One angler association overstocked their pond and encountered poor water quality due to nutrient runoff into the pond from a nearby dairy farm; survival of stocked fry was <l\%. A second angler association failed to eradicate resident fish from ponds before introduction of larval walleye; yields varied between 0% to almost 10% of stocked fry, with best yields from ponds with few or no contaminant fish. The 1989 culture experience demonstrates that novice culturists can culture walleye fingerlings successfully in earthen ponds, that general guidelines developed over the last 3-4 years are effective, and that daily maintenance and good record keeping greatly enhance the likelihood of success. Equally important, preliminary monitoring of stocked bays and tributaries indicates an increased abundance of walleye and anglers are now catching walleye in areas stocked with walleye fingerlings, sites where the fish has been rare or absent for nearly two decades. The project can serve as a template for similar cooperative efforts that target other species and/or other areas.

EXPERIMENTAL TREATMENT OF FURUNCULOSIS WITH THE FLUOROQUINOLONE ENROFLOXACIN (BAYER)

P. R. Bowser, J. H. Schachte, J. G. Babish, and G. A. Wooster Cornell University, Ithaca

The fluoroquinolones are a relatively new group of manmade antimicrobial compounds that have efficacy against a broad range of both gram negative and gram positive bacterial organisms. Enrofloxacin is a fluoroquinolone manufactured by Bayer that is currently being evaluated for use in a number of animal species, including fish. Pharmacokinetic studies conducted in rainbow trout indicated that the drug was absorbed well after oral administration. Peak concentrations were reached in the serum, liver, kidney, muscle and skin in 6-8 hours. These concentrations were well above mimimum inhibitory concentrations (MIC) measured in the laboratory for a number of bacteria pathogenic to fish. The half-life of the drug was found to be related to water temperature. At $10 C$ the half-life was $47-56$ hours, while at 15 C it was 39-42 hours. Peak concentrations achieved following administration of a single oral dose were lower at 10 C than those measured at 15 C .

Field epizootics of furunculosis were identified in which the Aeromonas salmonicida isolate was found to be resistant to both Terramycin and Romet-30, the only currently approved compounds for treatment of this disease in fish. Permission was obtained from the U.S. Food and Drug Administration to treat the fish with enrofloxacin. A trial involving Atlantic salmon was unsuccessful. The fish did not feed well, as indicated by observation during the feeding process and from analysis of fish tissues for drug residue. A second trial was conducted in which hybrid brook trout X lake trout were treated. In this case the mortality rate of fish medicated with enrofloxacin did decrease. Tissue concentrations in the medicated fish revealed antimicrobial activity in excess of the MIC's for many fish pathogens.

OPTIMAL PROTOCOLS FOR HYPERTHERMAL AND HYDROSTATIC PRESSURE SHOCK PRODUCTION OF TRIPLOID BROOK AND BROWN TROUT HYBRIDS Dwight W. Herren, Charles Krueger, and Bernie May Cornell University, Ithaca

Combinations of two parameters, duration of shock treatment and time of initiation after fertilization, were tested using hydrostatic pressure and hyperthermal shock in the production of intergeneric allo-triploid hybrid trout, (brown trout-Salmo trutta X brook trout-Salvelinus fontinalis). Reciprocal crosses were made with brook and brown trout as the maternal parent. Ploidy levels were identified using starch gel electrophoresis. Optimal protocols were evaluated on the basis of an efficiency index, (EI). EI= 8 survival to hatch x of triploidy conversion $x 100$.
The optimal protocol for a hydrostatic pressure shock of 7000 psi was a duration of two minutes beginning 20 minutes post-activation for either maternal parent cross. Optimum hyperthermal shock ($29^{\circ} \mathrm{C}$) for maternal brook trout cross occurred for a duration of ten minutes beginning ten minutes post-activation. For maternal brown trout cross, the optimum hyperthermal shock extended for twenty minutes beginning ten minutes post-activation. The maximum EI value was 91% for a single pair mating with a brown trout female using hyperthermal shock.

Applications to fish management and aquaculture will be discussed.

A COMPARISON OF RECOVERY, GROWTH, MOVEMENT, AND DISTRIBUTION OF YOUNG-OF-YEAR ASSINICA AND TEMISCAMIE STRAIN BROOK TROUT STOCKED IN SMALL STREAMS

Henry K. Vanoffelen, Charles C. Krueger, and Carl L. Schofield Cornell University, Ithaca

Identification and understanding of differences among brook trout strains is needed for effective strain management. In 1989, a study was conducted to compare performance and behavior of Assinica and Temiscamie strain brook trout when stocked in streams. Two short term and one long term field trials were conducted in Laramie Inlet. Two short term field trials were conducted in a woods Lake tributary. No consistent large differences in recovery or growth were found between the strains at either study area. Consistent larger differences were found in the initial movement and final distribution of the strains in Laramie Inlet. Distribution and movement of trout in Woods Lake Inlet was not evaluated. Approximately, four Temiscamie trout to one Assinica trout moved downstream immediately after stocking Laramie Inlet. Significantly more Assinica trout than Temiscamie trout were found in upstream sections of Laramie Inlet and significantly more Temiscamie trout than Assinica trout were found in the downstream sections of Laramie Inlet. These results emphasize the need for critical comparisons of the performance and behavior of strains in order to implement effective strain management programs.

> THE ROLE OF VEGETATION DENSITY AND STRUCTURE IN THE SELECTION OF REFUGIA BY JUVENILE SUNFISH
> AmY E. Kahn and Robert G. Werner
> SUNY College of Environmental Science \& Forestry, Syracuse

Vegetative structure and density were examined experimentally to determine their influence on the distribution of juvenile, 25 mm to 70 mm , bluegill sunfish (Lepomis macrochirus) searching for refuge from predators. This information will aid fishery managers and lake associations in resolving management conflicts over plant control methods. We looked at percent cover and stem density using artificial ponds and vegetation to eliminate the effect of foraging influences. Preliminary results are in agreement with those published by Savino \& Stein (1982) and Gotceitas \& Colgan (1987).

In an experiment observing the distribution of juvenile bluegills in vegetation patch densities of $0,50,100,200$ stems $/ m^{2}$, the largest numbers of fish were consistently found in areas of highest plant density. This trend was most significant in the pools containing broad-leafed pondweed, as opposed to eelgrass or coontail. When a predator, largemouth bass (Micropterus salmoides), was added to each pool the bluegills no longer showed any preference for a particular plant density. Rather than hiding in the thickest vegetation, they appeared to use schooling behavior as a defense. This change in behavior is likely due to the lack of adequate protection from the available vegetation. When the experiment was repeated with higher plant densities, bluegills effectively used the 1000 stem $/ \mathrm{m}^{2}$ as a refuge from the bass. An additional experiment entailed varying plant type at a constant stem density to determine whether dense branch structure, measured as percent cover, also influences bluegill choice of refugia.

USING MITOCHONDRIAL DNA FOR STOCK IDENTIFICATION OF LAKE TROUT Peter M. Grewe, Charles Krueger, Ellen Marsden, Charles Aquadro, and Bernie May Cornell University, Ithaca

Mitochondrial DNA was purified from 480 lake trout (Salvelinus namaycush) representing six strains of Great Lake's origin (Clearwater, Jenny, Killala, Manitou, Seneca, and Superior) currently being stocked into Lake Ontario. Four restriction enzymes (Ava I, Bam HI, Hinf I, and Taq I) were then used to assess relative mtDNA haplotype frequency differences among these six lake trout strains. The six strains of lake trout were characterized by dramatically different frequencies of their mtDNA haplotypes. Simulated lake trout mixtures were then created using the frequencies of the mtDNA haplotypes observed in the adult populations. The mtDNA haplotype frequencies of the simulated mixtures were then compared to the haplotype frequencies observed in two year classes of naturally produced lake trout fry captured from Stony Island reef in Lake Ontario. The comparisons indicated that the Seneca Lake strain had contributed to $>50 \%$ of the observed progeny of both year classes. Each fry was also examined for variants at 18 protein encoding loci. The protein data was entered into a program which used the maximum likelihood method and baseline data collected from an earlier study to estimate strain contribution to the two year classes of naturally produced fry. The protein data also indicated that $>50 \%$ of the progeny of both year classes had arisen from Seneca Lake strain parents. These results indicated that mitochondrial DNA markers have significant potential for the discrimination of lake trout strains.

ANGLERS' ATTITUDES AND BEHAVIORS REGARDING THE NEW YORK STATE FISH CONSUMPTION HEALTH ADVISORY FOR LAKE ONTARIO: A RISK COMMUNICATION PERSPECTIVE IN FISHERY MANAGEMENT

 Christine M. Springer and Barbara A. Knuth

 Christine M. Springer and Barbara A. Knuth Cornell University, Ithaca

 Cornell University, Ithaca}

Quantifying and evaluating the human aspect of a sportfishery enables a communication strategy responsive to public needs and fishery management objectives to be designed and implemented. One example of the usefulness of collecting sociological data is in the case of the Lake Ontario sportfishery, which has been affected by chemical contaminants for over twenty years, and which currently has a fish consumption health advisory in effect for some species of fish. We created and tested a fishery risk communcation planning model in order to develop a risk communication strategy for a fish consumption health advisory designed to meet the needs of Lake Ontario anglers and fishery managers.

Opinion leaders from organized recreational angling groups and charter boat associations, who constitute two segments of active and involved Lake Ontario anglers, were surveyed by mail. A concurrent statewide angler survey allowed comparisons between opinion leaders and a random selection of statewide anglers. The opinion leaders survey assessed the following factors in our risk communication model: motivations for fishing, fishing behavior, fish cleaning and cooking practices, awareness of and attitude toward the health advisory, behavioral changes resulting from awareness of the advisory, socioeconomic status, and communication behavior.

We characterized the Lake Ontario opinion leaders with respect to fishing involvement and attitudes toward the health advisory, and we quantitatively assessed the fisheries communication model.

ANGLER SATISFACTION: DETERMINANTS AND IMPLICATIONS
ON ONEIDA LAKE, NEW YORK
Jonathan M. Passe
Ithaca, New York

Effective fishery management programs produce multiple benefits for resource enhancement and angler use and enjoyment. One measure of angler benefits is satisfaction with the fishing experience. Management strategies aimed at enhancing satisfaction should be based on an understanding of the determinants of satisfactions and expectations among anglers. The objectives of this study were: l) to examine angler reaction to fishing conditions on Oneida Lake, New York and 2) to determine how angler characteristics influenced trip satisfaction. In June and July, 1989, 389 recreational anglers were surveyed at two public boat access sites on Oneida Lake.

Two-thirds of anglers surveyed felt their trip met with their expectations. The majority (73.5\%) were either satisfied or very satisfied with their trip; 12% were neutral; and 14.5% were either dissatisfied or very dissatisfied.

Fishing-related factors were the primary determinants of trip satisfaction for 54% of anglers surveyed. Other anglers identified primary determinants of satisfaction as weather conditions (18\%); general experience enjoyment (18\%); environmental quality (4\%); comraderie/company (2\%); and mechanical factors (2\%).

For anglers catching fish, satisfaction increased with increasing catch. Anglers who did not catch fish were more satisfied than those anglers catching only one fish. The proportion of anglers whose trip expectations were met increased with the number of fish caught. Satisfied and very satisfied anglers fished longer than did dissatisfied and very dissatisfied anglers.

Average satisfaction (between neutral and satisfied) did not vary significantly by age, nor by the year anglers first fished Oneida Lake, with the exception of anglers who first fished the lake prior to 1965 (on average more satisfied) and anglers who first fished Oneida in 1986 (on average less satisfied). The number of anticipated future trips to Oneida varied slightly with current trip satisfaction.

The results of this study suggest certain potential strategies for increasing angler satisfaction in the Oneida Lake fishery. Making more fish available for harvest may serve to increase angler satisfaction. Lower average satisfaction for anglers first fishing Oneida later than 1985 may suggest that these anglers are not using the lake to its full potential as long-time, higher satisfaction anglers are. An education program, discussing how best to use Oneida's resources may be useful in helping to provide these anglers with more satisfying experiences.

SPAWNING ECOLOGY OF THE NORTHERN PIKE (ESOX LUCIUS) AND MUSKELUNGE (ESOX MASQUINONGY) OF THE ST. LAWRENCE RIVER

John Farrell
Rochester, New York
Recent studies of naturally reproducing esocids in the St. Lawrence River emphasize the identification and protection of spawning habitat. Probable muskellunge spawning grounds have been identified through trapnetting during the spring spawning run and monitoring movements through radiotelemetry. The present study was targeted to characterize spawning habitat utilized by both muskellunge and northern pike.

The main objectives for the study were to recover naturally fertilized eggs and determine their viability at the time of collection, to collect information on physical characteristics of egg broadcast areas including depth, temperature regime, dominant vegetative types, and substrate types, and to determine the extent of spatial and temporal overlap between northern pike and muskellunge egg deposition.

Five egg collection methods were used, an improved egg basket proved to be most effective. Egg collection baskets were used in Point Marguerite Marsh, near Alexandria Bay from 19 April to 12 June 1989.

A total of 123 northern pike eggs were collected on fifteen of sixteen fixed sampling stations, and 102 muskellunge eggs were collected on nine of the stations. A partial spatial and temporal overlap in egg deposition of muskellunge and northern pike was demonstrated in Point Marguerite Marsh.

Over all sampling methods and sites sampled 76.8 percent of northern pike eggs, and 71.3 percent of muskellunge eggs were viabile at the time of collection.

RESPONCE OF LAKE TROUT TO LIMING IN AN ADIRONDACK LAKE Christopher J. Keleher and Carl Schofield
 Thendara, New York

The lake trout (Salvelinus namaycush) population of Little simon Pond, located in the Tupper Lake region of Adirondack State Park, was monitered before, during, and after liming. Previous to liming the pH in Little Simon was low relative to other Adirondack lakes containing lake trout. The population had exhibited poor recruitment with little evidence of natural reproduction. Trapnetting catches were too low to determine population size. Preliming bioassays with juvenile lake trout showed a 90\% mortality rate. Following liming recruitment has improved. The catch per unit effort in trapnets has increased. Post liming bioassays showed 100\% survival.

ALEWIFE PREDATION, TROPHIC LEVELS AND WATER QUALITY OF CONESUS LAKE Norma Lee Puckett Rochester, New York

Conesus Lake has experienced changes within its trophic levels. While walleye continued to decline in the 1970^{\prime} s, an exotic was introduced during the late 1970's. This exotic is Alosa pseudoharenqus, commonly known as the alewife. The NYSDEC began stocking $3-5 \mathrm{~cm}$ walleye fingerlings at a rate of 65,000 per year over the years 1985 through 1988. It was hoped that adding this top level predator would control the alewife population.

I sampled Conesus Lake over a six month period in the spring and summer of 1988. Results of this sampling indicate that the alewife had declined by 41% from 1985 to 1988. This decline is attributed to a decrease in the forage base of the alewife. Zooplankton decreased in weighted mean size from 0.60 mm in 1972-73 (pre-alewife years) to 0.23 mm in 1985 and 0.18 mm in 1988. Daphnia pulex has not been sampled since 1983 and Diaptomus species were not sampled in 1988. Two littoral species were found within the pelagic waters in 1988. They are Eucyclops agilis and Macrocyclops albidus. Alewife stomach analyses revealed that Mesocyclops edax was consumed 99.25\% of the time.

Water quality has not improved in Conesus Lake. Turbidity, chlorophyll a, pH and soluble reactive phosphorous increased significantly ($\mathrm{P}<0.022$) within the epilimnion when compared to 1985 data.

GENETIC IDENTIFICATION AND COMPARISON OF WILD BROOK TROUT IN NEW YORK STATE
 David L. Perkins, Jr., Charles C. Krueger, and Bernie May Cornell University, Ithaca

The purpose of this study was to genetically identify wild brook trout populations throughout the state of New York. Brook trout (Salvelinus fontinalis) collected from 26 lakes and streams within New York State were analyzed electrophoretically for genetic variability at 75-85 enzyme loci. Statistically significant genetic differences were found between all pairwise comparisons of populations. Cluster analysis of genetic distances identified three major groups of brook trout associated with major river drainages. Information on the last glacial retreat in New York explains most of the distribution of genetic variability observed. The results provide information fundamental to the conservation and protection of wild brook trout in New York.

```
STOCKED LAKE TROUT DEPOSIT EGGS NON-RANDOMLY
    WITH RESPECT TO SUBSTRATE TYPE
    J. Ellen Marsden and Charles C. Krueger
            Cornell University, Ithaca
```

Since 1958, an intensive effort has been underway by the U.S. and Canada to restore depleted and extinct populations of lake trout in the Great Lakes. Stocking of lake trout in combination with lamprey control has established large populations of adults in all of the lakes except Lake Erie. However, evidence of sizeable natural reproduction by stocked fish is still limited. Until recently, efficient techniques for assessing lake trout reproduction have not been available. In addition, most of the historical information on lake trout reproductive behavior comes from observations in small, inland lakes. In the Great Lakes, we do not yet know (l) the extent of available spawning habitat, (2) whether the available spawning habitat is still capable of sustaining egg incubation, or (3) whether stocked fish from various hatchery and wild sources can find, recognize, and deposit eggs on appropriate spawning sites. We used a new technique for capturing lake trout eggs during spawning to assess whether stocked lake trout spawn on historic spawning sites, and whether they deposit eggs randomly with respect to substrate size. Egg traps were deployed on four types of substrate on a historic spawning reef near Stony Island in Lake Ontario. Eggs were captured primarily on a single substrate type, comprised of large rubble with deep interstitial spaces, and associated with steep contour. Observations using SCUBA indicated that eggs located in other areas were subjected to movement by currents, and were vulnerable to predation. Our results suggest that stocked lake trout select spawning substrate on Stony Island reef which can support successful egg incubation. These observations and techniques are being applied elsewhere in the Great Lakes to assess lake trout spawning. Information about the extent of successful spawning by lake trout will provide information to assist the achievement of the rehabilitation goal.

ABSTRACTS

CONTRIBDTED PAPERS \& POSTERS
1990 Annual Meeting
New York chapter, American fisheries society

EVALUATION OF MONOCLONAL ANTIBODY-BASED ELISA
FOR THE DIAGNOSIS OF RENIBACTERIUM SALMONINARUM
Hui-Min Hsu, Paul R. Bowser, and John H. Schachte Jr.
Cornell University, Ithaca
A monoclonal antibody-based ELISA was developed for the diagnosis of bacterial kidney disease (BKD) which can detect a minimum of 0.05 - 0.1 $\mathrm{ug} / \mathrm{ml}$ of R . salmoninarum antigen. During the $1988-89$ spawning season, sixty coho salmon (Oncorhynchus kisutch), sixty chinook salmon (o. tshawytscha) and sixty steelhead trout (0 . mykiss, Great Lakes rainbow trout) were screened for BKD using the developed ELISA and a direct fluorescent antibody test (FAT). Serum agglutination titers for R. salmoninarum were measured to determine any relationship between presence of antigen (R. salmoninarum bacterium) and humoral antibody to R. salmoninarum. Twelve of the sixty coho salmon, forty-eight of the sixty chinook salmon and six of the sixty steelhead trout were found BKD-positive by ELISA. Only one steelhead trout was found BKD-positive by FAT while none of the coho or chinook salmon were to be BKD-positive. It was concluded that the monoclonal antibody-based ELISA was more sensitive than FAT. Antibody titers of these asymptomatic fish were variable. There was no correlation between the antigen level and the antibody titer.

HIGH EFFICIENCY-LOW COST EGG AND FRY INCUBATION SYSTEMS FOR SMALL EXPERIMENTAL LOTS
 Dwight W. Herren, Charles Krueger, and Bernie May Cornell University, Ithaca

High efficiency-low cost incubations systems were designed for producing small experimental lots of fish. This horizontal design, coupled with tightly fitted egg containers, enhances water flow within each egg chamber which increases oxygenation, cleansing, deployment of egg treatments and ultimately survival.

Egg incubators consist of egg holders and a trough. Holders are constructed from 3" PVC pipe, 3" PVC coupling, and fiberglass window screen. Troughs consist of a section of Plastmo ${ }^{T M}$ round bottom rain gutter with end plates. Twenty 16 -unit gutters can be placed in a $4^{\prime} \times 8^{\prime}$ area. A 16 gutter system can be placed on a wall covering a 7'x8' area, 8" deep. The cost for a 16 gutter system (256 individual treatments) is $\$ 325$ and requires 30 hours to construct.

Fry incubation system consists of a modified 5 gallon plastic bucket. The drain system uses a $3^{\prime \prime}$ PVC standpipe friction fit into a modified PVC toilet flange affixed around a 3.5" hole in the bottom of the bucket. A screened, 4" PVC drain pipe draw tube covers the standpipe. A 20 unit system can be placed in a $4^{\prime} x 8^{\prime}$ area. The cost for a 20 circular system is $\$ 300$ and requires 8 hours to construct.

AN AGGREGATE HISTORICAL COMPARISON OF THE VARIABILITY OF LC50 VALUES FOR TWO REFERENCE COMPOUNDS AND EIGHT FRESHWATER SPECIES
W. S. Ewell and R. J. O'Boyle

Eastman Kodak Company, Rochester
The relative merits of Thymol and Sodium Dodecyl ("Lauryl") Sulfate for use as reference compounds (positive controls) in acute aquatic effects testing are evaluated. The L_{50} values calculated for these two compounds and eight freshwater species as part of an on-going program over a period of seven years are compared through statistical analyses. Routine multispecies exposures to reference compounds are performed in an attempt to monitor changes in inherent sensitivity in each of the aquatic animal colonies maintained for up to a decade within the laboratory. The eight freshwater species exposed as part of this study are: Pimpephales promelas (fathead minnow); Caecidotea intermedia (pillbug); Lumbriculus variegatus (aquatic earthworm); Dugesia dorotocephala (flatworm); Gammarus fasciatus (sideswimmer); Planorbella trivolvis (ramshorn snail); Daphnia magna, and Ceriodaphnia dubia (both daphnids). The aggregate historical data are examined for shifts in dose-response per species over time, as well as endpoint variability or differences between the two reference compounds within a species.

HABITAT SUITABILITY INDEX CURVES FOR STREAM DWELLING JUVENILE BROOK TROUT IN NORTHERN NEW YORK STATE
Kurt J. Jirka and John Homa, Jr. Ichthyological Associates, Inc., Lansing

Habitat suitability index curves for juvenile (<l00 mm total length) brook trout (Salvelinus fontinalis) were developed as part of an instream flow investigation sponsored by Niagara Mohawk Power Corporation at its Beaver River Hydroelectric Project in northern New York State. The habitat variables for which curves were developed include water velocity, water depth, water temperature, and substrate. The curves were developed using the Delphi method, a consensus-generating exercise utilizing a panel of experts on the subject of interest. A literature review on juvenile brook trout habitat use and preference was conducted in conjunction with the Delphi exercise. Information gathered from the literature was compared to the curves generated from the Delphi exercise for points of agreement and disagreement.

In general, the curves developed through the Delphi exercise were in agreement with the literature. Suitable focal velocities for stream-dwelling juvenile brook trout, as defined by the Delphi curves, ranged from 0.00-1.50 ft / s, with an optimal range of $0.20-0.70 \mathrm{ft} / \mathrm{s}$. Suitable water depths ranged from 0.20-3.00 ft, with optimal depths of $0.60-1.33 \mathrm{ft}$. Water temperature suitable for prolonged juvenile brook trout survival ranged from 0.0-24.0 C. Optimal temperatures were in the ll.0-16.0 C range. Gravel was identified as the most suitable substrate, followed by cobble.

```
DEVELOPMENT OF HABITAT SUITABILITY INDEX CURVES FOR SELECTED TAXA OF
    BENTHIC MACROINVERTEBRATES USING THE DELPHI METHOD
            Kurt J. Jirka and John Homa, Jr.
            Ichthyological Associates, Inc., Lansing
```

Habitat suitability index curves for six genera of benthic macroinvertebrates and the benthic macroinvertebrate community as a whole were developed as part of an instream flow investigation sponsored by Niagara Mohawk Power Corporation at its Beaver River Hydroelectric Project in northern New York State. The curves for the mayfly genus Baetis, the caddisfly genus Hydropsyche, and the blackfly genus Simulium are presented here. Habitat variables for which curves were developed include water velocity, water depth, and substrate. The curves were developed using the Delphi method, a consensus-generating exercise utilizing a panel of experts on the subject. Curves generated from the Delphi exercise were evaluated by comparison with information in the scientific literature.

In general, the curves developed through the Delphi exercise agreed with information in the literature. Optimum water velocities (within six inches of the substrate) ranged from $1.00-3.50 \mathrm{ft} / \mathrm{s}$ for Baetis, $1.14-2.45$ ft / s for Hydropsyche, and $0.80-3.60 \mathrm{ft} / \mathrm{s}$ for Simulium. Optimum water depths ranged from $0.30-2.00 \mathrm{ft}, 0.25-3.00 \mathrm{ft}$, and $0.2-2.50 \mathrm{ft}$ for Baetis, Hydropsyche, and Simulium, respectively. Cobble was identified as the most suitable substrate for all three genera, followed by boulder. Bedrock was also rated as highly suitable for simulium.

REMEDIAL ACTION PLANNING IN THE GREAT LAKES BASIN: AN OPPORTUNITY FOR FISHERY MANAGEMENT INTERESTS Betsy Kiernan Landre and Barbara A. Knuth Cornell University, Ithaca

Remedial Action Planning is a regional approach to planning for the cleanup of the 42 most polluted locations in the Great Lakes Basin. Known as the Areas of Concern, these 42 locations, situated mainly along rivers and in harbors, are recognized for especially poor water quality. Remedial Action Planning is coordinated by the International Joint Commission (IJC), yet the planning is carried out at the local level with the assistance of state, provincial, and, in some cases, local and federal agencies. Two tenets underlie the planning process: an ecosystem approach and broad-based public participation.

Remedial Action Planning stands out among environmental management programs in the Great Lakes Basin as an opportunity for diverse interests to work together in a consensually-based decision-making process to influence remediation of polluted Areas and restore beneficial resource uses of the Lakes. As such, fishery management agencies have a stake in Remedial Action Planning.

A recent survey of Remedial Action Plan (RAP) coordinators in each Area reveals a composite picture of progress to date. Fish communities are highly affected in 86% of the Areas. In 34 cases, efforts have been made to involve fishery groups in the planning process. The ultimate benefits of the involvement of these groups are to the Great Lakes fishery resources.

ICHTHYOLOGY COLLECTION, NEW YORK STATE MUSEUM
Robert A. Daniels
Biological Survey Laboratory, Troy
Museum collections can serve as valuable resources for disciplines as diverse as taxonomy, natural history, toxicology and pathology. The fish collection at the New York State Museum has recently undergone a number of major changes that will, ulitmately, facilitate its use. The entire collection was moved to a new facility with superior storage and laboratory space. Information on the specimens in the collection is currently being transferred to a new data-base-management system, called MUSE. An inventory of the entire collection is finished and the cataloguing process should be completed by early Spring. In this poster, I hope to introduce you to some of the interesting information associated with the collection, some of its strongest features and some of the uses for which the collection can be used. I encourage all of you to familiarize yourself with this collection and make it a part of your research and management programs.

ASPECTS OF THE LIFE HISTORY OF THE COMELY SHINER, NOTROPIS AMOENUS (ABBOTT)
IN A SOUTHEASTERN NEW YORK STREAM
Mary Anne Thiesing and George Dale
U.S. Army Corps of Engineers
New York District, New York

Data collected on a population of Notropis amoenus from the Shawangunk Kill indicate that this species has a number of broad similarities in life history to other Notropis species with which it commonly co-occurs. Spawning in N. amoenus typically begins later in the season than for other populations of syntopic cyprinids, with recruitment of young of the year fish occurring largely in late August. The post-larval juveniles had a growth coefficient which was not significantly different than 3 , indicating isometric growth following recruitment to the population. The overall form of growth for the population, however, is allometric, with $b=2.64 \pm 0.07$, indicating that body form becomes increasingly more slender with age.

Juvenile fish ($0+-1+$) select sandy bottomed habitats having a moderately rapid current speed and commonly co-occur with other species. Adults ($2+$) are more likely to occur in monospecific aggregations in rocky-bottomed riffle habitats. The age of breeding adults was $2+$ years; for this population, no older specimens were collected.

Comparisons of feeding habits of groups of N. amoenus collected from areas in which this organism is found in association with other species and when it is found alone, indicate that differences in food choice appear to be age related rather than a function of competition. Juveniles feed on a wide variety of prey items, while adults appeared to rely more on benthic items. Seasonal differences in the adult diets, however, indicate that this species is capable of utilizing a wide variety of prey at any age, and that utilization patterns for a given age group vary with season.

CULTURE OF FINGERLING WALLEYE FOR INTRODUCTION INTO LAKE ONTARIO AND POTENTIALLY OTHER APPROPRIATE PUBLIC WATERS Joseph K. Buttner and David B. MacNeill SUNY Brockport, Brockport

In 1989 over 85,000 fingerling walleye (Stizostedion vitreum, mainly $35-125 \mathrm{~mm}$ TL) were cultured in eastern ponds and introduced into bays and tributaries of Lake Ontario. The walleye enhancement and restoration effort, now in its fourth year, has produced and stocked nearly 190,000 fingerling walleye since 1986. The cooperative effort is possible through the on-going and close collaboration of six angler associations (Black Lake Fish and Game Club, Fairhaven Federation of Sportman's Clubs, Niagara River Angler's Association, Port Bay Improvement Association, Orleans County Federation of Sportman's Club, and Walleyes for Wayne County), the NYS Department of Environmental Conservation, NY Sea Grant, and SUNY Brockport. Members of each angler association provide for the daily maintenance and care of the walleye while they are being cultured in ponds. Four associations followed guidelines closely and experienced survivals $>50 \%$ of stocked fry. One angler association overstocked their pond and encountered poor water quality due to nutrient runoff into the pond from a nearby dairy farm; survival of stocked fry was <l\%. A second angler association failed to eradicate resident fish from ponds before introduction of larval walleye; yields varied between 0% to almost 10% of stocked fry, with best yields from ponds with few or no contaminant fish. The 1989 culture experience demonstrates that novice culturists can culture walleye fingerlings successfully in earthen ponds, that general guidelines developed over the last 3-4 years are effective, and that daily maintenance and good record keeping greatly enhance the likelihood of success. Equally important, preliminary monitoring of stocked bays and tributaries indicates an increased abundance of walleye and anglers are now catching walleye in areas stocked with walleye fingerlings, sites where the fish has been rare or absent for nearly two decades. The project can serve as a template for similar cooperative efforts that target other species and/or other areas.

EXPERIMENTAL TREATMENT OF FURUNCULOSIS WITH THE FLUOROQUINOLONE ENROFLOXACIN (BAYER)

P. R. Bowser, J. H. Schachte, J. G. Babish, and G. A. Wooster Cornell University, Ithaca

The fluoroquinolones are a relatively new group of manmade antimicrobial compounds that have efficacy against a broad range of both gram negative and gram positive bacterial organisms. Enrofloxacin is a fluoroquinolone manufactured by Bayer that is currently being evaluated for use in a number of animal species, including fish. Pharmacokinetic studies conducted in rainbow trout indicated that the drug was absorbed well after oral administration. Peak concentrations were reached in the serum, liver, kidney, muscle and skin in 6-8 hours. These concentrations were well above mimimum inhibitory concentrations (MIC) measured in the laboratory for a number of bacteria pathogenic to fish. The half-life of the drug was found to be related to water temperature. At l0C the half-life was 47-56 hours, while at l5C it was 39-42 hours. Peak concentrations achieved following administration of a single oral dose were lower at 10 C than those measured at l5C.

Field epizootics of furunculosis were identified in which the Aeromonas salmonicida isolate was found to be resistant to both Terramycin and Romet-30, the only currently approved compounds for treatment of this disease in fish. Permission was obtained from the U.S. Food and Drug Administration to treat the fish with enrofloxacin. A trial involving Atlantic salmon was unsuccessful. The fish did not feed well, as indicated by observation during the feeding process and from analysis of fish tissues for drug residue. A second trial was conducted in which hybrid brook trout X lake trout were treated. In this case the mortality rate of fish medicated with enrofloxacin did decrease. Tissue concentrations in the medicated fish revealed antimicrobial activity in excess of the MIC's for many fish pathogens.

OPTIMAL PROTOCOLS FOR HYPERTHERMAL AND HYDROSTATIC PRESSURE SHOCK PRODUCTION OF TRIPLOID BROOK AND BROWN TROUT HYBRIDS

Dwight W. Herren, Charles Krueger, and Bernie May Cornell University, Ithaca

Combinations of two parameters, duration of shock treatment and time of initiation after fertilization, were tested using hydrostatic pressure and hyperthermal shock in the production of intergeneric allo-triploid hybrid trout, (brown trout-Salmo trutta X brook trout-Salvelinus fontinalis). Reciprocal crosses were made with brook and brown trout as the maternal parent. Ploidy levels were identified using starch gel electrophoresis. Optimal protocols were evaluated on the basis of an efficiency index, (EI). $E I=\%$ survival to hatch x of triploidy conversion $x 100$.
The optimal protocol for a hydrostatic pressure shock of 7000 psi was a duration of two minutes beginning 20 minutes post-activation for either maternal parent cross. Optimum hyperthermal shock ($29^{\circ} \mathrm{C}$) for maternal brook trout cross occurred for a duration of ten minutes beginning ten minutes post-activation. For maternal brown trout cross, the optimum hyperthermal shock extended for twenty minutes beginning ten minutes post-activation. The maximum EI value was 91% for a single pair mating with a brown trout female using hyperthermal shock.

Applications to fish management and aquaculture will be discussed.

A COMPARISON OF RECOVERY, GROWTH, MOVEMENT, AND DISTRIBUTION OF YOUNG-OF-YEAR ASSINICA AND TEMISCAMIE STRAIN BROOK TROUT STOCKED IN SMALL STREAMS
Henry K. Vanoffelen, Charles C. Krueger, and Carl L. Schofield Cornell University, Ithaca

Abstract

Identification and understanding of differences among brook trout strains is needed for effective strain management. In 1989, a study was conducted to compare performance and behavior of Assinica and Temiscamie strain brook trout when stocked in streams. Two short term and one long term field trials were conducted in Laramie Inlet. Two short term field trials were conducted in a Woods Lake tributary. No consistent large differences in recovery or growth were found between the strains at either study area. Consistent larger differences were found in the initial movement and final distribution of the strains in Laramie Inlet. Distribution and movement of trout in Woods Lake Inlet was not evaluated. Approximately, four Temiscamie trout to one Assinica trout moved downstream immediately after stocking Laramie Inlet. Significantly more Assinica trout than Temiscamie trout were found in upstream sections of Laramie Inlet and significantly more Temiscamie trout than Assinica trout were found in the downstream sections of Laramie Inlet. These results emphasize the need for critical comparisons of the performance and behavior of strains in order to implement effective strain management programs.

THE ROLE OF VEGETATION DENSITY AND STRUCTURE IN THE SELECTION OF REFUGIA BY JUVENILE SUNFISH
Amy E. Kahn and Robert G. Werner
SUNY College of Environmental Science \& Forestry, Syracuse

Vegetative structure and density were examined experimentally to determine their influence on the distribution of juvenile, 25 mm to 70 mm , bluegill sunfish (Lepomis macrochirus) searching for refuge from predators. This information will aid fishery managers and lake associations in resolving management conflicts over plant control methods. We looked at percent cover and stem density using artificial ponds and vegetation to eliminate the effect of foraging influences. Preliminary results are in agreement with those published by Savino \& Stein (1982) and Gotceitas \& Colgan (1987).

In an experiment observing the distribution of juvenile bluegills in vegetation patch densities of $0,50,100,200$ stems $/ \mathrm{m}^{2}$, the largest numbers of fish were consistently found in areas of highest plant density. This trend was most significant in the pools containing broad-leafed pondweed, as opposed to eelgrass or coontail. When a predator, largemouth bass (Micropterus salmoides), was added to each pool the bluegills no longer showed any preference for a particular plant density. Rather than hiding in the thickest vegetation, they appeared to use schooling behavior as a defense. This change in behavior is likely due to the lack of adequate protection from the available vegetation. When the experiment was repeated with higher plant densities, bluegills effectively used the 1000 stem $/ \mathrm{m}^{2}$ as a refuge from the bass. An additional experiment entailed varying plant type at a constant stem density to determine whether dense branch structure, measured as percent cover, also influences bluegill choice of refugia.

USING MITOCHONDRIAL DNA FOR STOCK IDENTIFICATION OF LAKE TROUT

Peter M. Grewe, Charles Krueger, Ellen Marsden, Charles Aquadro, and Bernie May Cornell University, Ithaca

Mitochondrial DNA was purified from 480 lake trout (Salvelinus namaycush) representing six strains of Great Lake's origin (Clearwater, Jenny, Killala, Manitou, Seneca, and Superior) currently being stocked into Lake Ontario. Four restriction enzymes (Ava I, Bam HI, Hinf I, and Taq I) were then used to assess relative mtDNA haplotype frequency differences among these six lake trout strains. The six strains of lake trout were characterized by dramatically different frequencies of their mtDNA haplotypes. Simulated lake trout mixtures were then created using the frequencies of the mtDNA haplotypes observed in the adult populations. The mtDNA haplotype frequencies of the simulated mixtures were then compared to the haplotype frequencies observed in two year classes of naturally produced lake trout fry captured from Stony Island reef in Lake Ontario. The comparisons indicated that the Seneca Lake strain had contributed to $>50 \%$ of the observed progeny of both year classes. Each fry was also examined for variants at 18 protein encoding loci. The protein data was entered into a program which used the maximum likelihood method and baseline data collected from an earlier study to estimate strain contribution to the two year classes of naturally produced fry. The protein data also indicated that $>50 \%$ of the progeny of both year classes had arisen from Seneca Lake strain parents. These results indicated that mitochondrial DNA markers have significant potential for the discrimination of lake trout strains.

```
ANGLERS' ATTITUDES AND BEHAVIORS REGARDING THE NEW YORK STATE
        FISH CONSUMPTION HEALTH ADVISORY FOR LAKE ONTARIO:
    A RISK COMMUNICATION PERSPECTIVE IN FISHERY MANAGEMENT
            Christine M. Springer and Barbara A. Knuth
                    Cornell University, Ithaca
```

Quantifying and evaluating the human aspect of a sportfishery enables a communication strategy responsive to public needs and fishery management objectives to be designed and implemented. One example of the usefulness of collecting sociological data is in the case of the Lake Ontario sportfishery, which has been affected by chemical contaminants for over twenty years, and which currently has a fish consumption health advisory in effect for some species of fish. We created and tested a fishery risk communication planning model in order to develop a risk communication strategy for a fish consumption health advisory designed to meet the needs of Lake Ontario anglers and fishery managers.

Opinion leaders from organized recreational angling groups and charter boat associations, who constitute two segments of active and involved Lake Ontario anglers, were surveyed by mail. A concurrent statewide angler survey allowed comparisons between opinion leaders and a random selection of statewide anglers. The opinion leaders survey assessed the following factors in our risk communication model: motivations for fishing, fishing behavior, fish cleaning and cooking practices, awareness of and attitude toward the health advisory, behavioral changes resulting from awareness of the advisory, socioeconomic status, and communication behavior.

We characterized the Lake Ontario opinion leaders with respect to fishing involvement and attitudes toward the health advisory, and we quantitatively assessed the fisheries communication model.

ANGLER SATISFACTION: DETERMINANTS AND IMPLICATIONS
ON ONEIDA LAKE, NEW YORK
Jonathan M. Passe
Ithaca, New York

Effective fishery management programs produce multiple benefits for resource enhancement and angler use and enjoyment. One measure of angler benefits is satisfaction with the fishing experience. Management strategies aimed at enhancing satisfaction should be based on an understanding of the determinants of satisfactions and expectations among anglers. The objectives of this study were: l) to examine angler reaction to fishing conditions on Oneida Lake, New York and 2) to determine how angler characteristics influenced trip satisfaction. In June and July, 1989, 389 recreational anglers were surveyed at two public boat access sites on Oneida Lake.

Two-thirds of anglers surveyed felt their trip met with their expectations. The majority (73.5\%) were either satisfied or very satisfied with their trip; 12% were neutral; and 14.5% were either dissatisfied or very dissatisfied.

Fishing-related factors were the primary determinants of trip satisfaction for 54\% of anglers surveyed. Other anglers identified primary determinants of satisfaction as weather conditions (18\%); general experience enjoyment (18\%); environmental quality (4\%); comraderie/company (2\%); and mechanical factors (2\%).

For anglers catching fish, satisfaction increased with increasing catch. Anglers who did not catch fish were more satisfied than those anglers catching only one fish. The proportion of anglers whose trip expectations were met increased with the number of fish caught. Satisfied and very satisfied anglers fished longer than did dissatisfied and very dissatisfied anglers.

Average satisfaction (between neutral and satisfied) did not vary significantly by age, nor by the year anglers first fished Oneida Lake, with the exception of anglers who first fished the lake prior to 1965 (on average more satisfied) and anglers who first fished Oneida in 1986 (on average less satisfied). The number of anticipated future trips to Oneida varied slightly with current trip satisfaction.

The results of this study suggest certain potential strategies for increasing angler satisfaction in the Oneida Lake fishery. Making more fish available for harvest may serve to increase angler satisfaction. Lower average satisfaction for anglers first fishing Oneida later than 1985 may suggest that these anglers are not using the lake to its full potential as long-time, higher satisfaction anglers are. An education program, discussing how best to use Oneida's resources may be useful in helping to provide these anglers with more satisfying experiences.

SPAWNING ECOLOGY OF THE NORTHERN PIKE (ESOX LUCIUS) AND MUSKELUNGE (ESOX MASQUINONGY) OF THE ST. LAWRENCE RIVER
John Farrell
Rochester, New York

Recent studies of naturally reproducing esocids in the St. Lawrence River emphasize the identification and protection of spawning habitat. Probable muskellunge spawning grounds have been identified through trapnetting during the spring spawning run and monitoring movements through radiotelemetry. The present study was targeted to characterize spawning habitat utilized by both muskellunge and northern pike.

The main objectives for the study were to recover naturally fertilized eggs and determine their viability at the time of collection, to collect information on physical characteristics of egg broadcast areas including. depth, temperature regime, dominant vegetative types, and substrate types, and to determine the extent of spatial and temporal overlap between northern pike and muskellunge egg deposition.

Five egg collection methods were used, an improved egg basket proved to be most effective. Egg collection baskets were used in Point Marguerite Marsh, near Alexandria Bay from 19 April to 12 June 1989.

A total of 123 northern pike eggs were collected on fifteen of sixteen fixed sampling stations, and 102 muskellunge eggs were collected on nine of the stations. A partial spatial and temporal overlap in egg deposition of muskellunge and northern pike was demonstrated in Point Marguerite Marsh.

Over all sampling methods and sites sampled 76.8 percent of northern pike eggs, and 71.3 percent of muskellunge eggs were viabile at the time of collection.

RESPONCE OF LAKE TROUT TO LIMING IN AN ADIRONDACK LAKE Christopher J. Keleher and Carl Schofield Thendara, New York

The lake trout (Salvelinus namaycush) population of Little Simon Pond, located in the Tupper Lake region of Adirondack State Park, was monitered before, during, and after liming. Previous to liming the pH in Little Simon was low relative to other Adirondack lakes containing lake trout. The population had exhibited poor recruitment with little evidence of natural reproduction. Trapnetting catches were too low to determine population size. Preliming bioassays with juvenile lake trout showed a 90% mortality rate. Following liming recruitment has improved. The catch per unit effort in trapnets has increased. Post liming bioassays showed 100\% survival.

ALEWIFE PREDATION, TROPHIC LEVELS AND WATER QUALITY OF CONESUS LAKE
Norma Lee Puckett
Rochester, New York
Conesus Lake has experienced changes within its trophic levels. While walleye continued to decline in the 1970^{\prime} s, an exotic was introduced during the late $1970^{\prime} \mathrm{s}$. This exotic is Alosa pseudoharenqus, commonly known as the alewife. The NYSDEC began stocking $3-5 \mathrm{~cm}$ walleye fingerlings at a rate of 65,000 per year over the years 1985 through 1988. It was hoped that adding this top level predator would control the alewife population.

I sampled Conesus Lake over a six month period in the spring and summer of 1988. Results of this sampling indicate that the alewife had declined by 41% from 1985 to 1988. This decline is attributed to a decrease in the forage base of the alewife. Zooplankton decreased in weighted mean size from 0.60 mm in 1972-73 (pre-alewife years) to 0.23 mm in 1985 and 0.18 mm in 1988. Daphnia pulex has not been sampled since 1983 and Diaptomus species were not sampled in 1988. Two littoral species were found within the pelagic waters in 1988. They are Eucyclops agilis and Macrocyclops albidus. Alewife stomach analyses revealed that Mesocyclops edax was consumed 99.25% of the time.

Water quality has not improved in Conesus Lake. Turbidity, chlorophyll a, pH and soluble reactive phosphorous increased significantly ($\mathrm{P}<0.022$) within the epilimnion when compared to 1985 data.

GENETIC IDENTIFICATION AND COMPARISON OF WILD BROOK TROUT IN NEW YORK STATE David L. Perkins, Jr., Charles C. Krueger, and Bernie May Cornell University, Ithaca

The purpose of this study was to genetically identify wild brook trout populations throughout the state of New York. Brook trout (Salvelinus fontinalis) collected from 26 lakes and streams within New York State were analyzed electrophoretically for genetic variability at 75-85 enzyme loci. Statistically significant genetic differences were found between all pairwise comparisons of populations. Cluster analysis of genetic distances identified three major groups of brook trout associated with major river drainages. Information on the last glacial retreat in New York explains most of the distribution of genetic variability observed. The results provide information fundamental to the conservation and protection of wild brook trout in New York.

```
STOCKED LAKE TROUT DEPOSIT EGGS NON-RANDOMLY
                        WITH RESPECT TO SUBSTRATE TYPE
    J. Ellen Marsden and Charles C. Krueger
        Cornell University, Ithaca
```

Since 1958, an intensive effort has been underway by the U.S. and Canada to restore depleted and extinct populations of lake trout in the Great Lakes. Stocking of lake trout in combination with lamprey control has established large populations of adults in all of the lakes except Lake Erie. However, evidence of sizeable natural reproduction by stocked fish is still limited. Until recently, efficient techniques for assessing lake trout reproduction have not been available. In addition, most of the historical information on lake trout reproductive behavior comes from observations in small, inland lakes. In the Great Lakes, we do not yet know (1) the extent of available spawning habitat, (2) whether the available spawning habitat is still capable of sustaining egg incubation, or (3) whether stocked fish from various hatchery and wild sources can find, recognize, and deposit eggs on appropriate spawning sites. We used a new technique for capturing lake trout eggs during spawning to assess whether stocked lake trout spawn on historic spawning sites, and whether they deposit eggs randomly with respect to substrate size. Egg traps were deployed on four types of substrate on a historic spawning reef near Stony Island in Lake Ontario. Eggs were captured primarily on a single substrate type, comprised of large rubble with deep interstitial spaces, and associated with steep contour. Observations using SCUBA indicated that eggs located in other areas were subjected to movement by currents, and were vulnerable to predation. Our results suggest that stocked lake trout select spawning substrate on Stony Island reef which can support successful egg incubation. These observations and techniques are being applied elsewhere in the Great Lakes to assess lake trout spawning. Information about the extent of successful spawning by lake trout will provide information to assist the achievement of the rehabilitation goal.

1990 ANNUAL MEETING PROGRAM NEW YORKCHAPTER-AMERICAN FISHERIES SOCIETY

Januaxy 25-27. 1990
The Treadway Inn owego, New York


```
1990 ANNUAL MEETING PROGRAM
        Owego Treadway Inn
        Owego, New York
    SYNOPSIS OF ACTIVITIES
```

Thursday, January 25
6:00- 9:00 PM

7:00- 9:00 PM
9:00-11:00 PM

Friday, January 26

9:00-9:05 AM

9:05-12:00 PM

12:00-1:30 PM

1:30- 3:30 PM

3:30-5:00 PM

5:00-5:30 PM

5:00-7:30 PM

Saturday, January 27

	Breakfast (on your own)
9:00-11: 40 AM	Contributed Paper Sessions I and II
$11: 40-12: 00 \mathrm{PM}$	Closing Ceremonies

Breakfast (on your own)

Closing Ceremonies

Friday, 26 January 1990

9:00-9:05 AM | Welcome and Opening Remarks |
| :--- |
| Jim Winter |

TNVITED PAPER SESSION: EXOTIC INVASIONS \& RANGE EXPANSIONS
Williamsburg Room
Moderator - David Mac Neill

9:05- 9:30 AM	Biological invasions in the Great Lakes: the role of ballast water and general perspectives. Dr. James Carlton, Williams College
9:30- 9:55 AM	Bythotrephes cederstroemi and its role as both a new predator and a new prey in the Great Lakes. Dr. Edward Mills, Cornell University
9:55-10:20 AM	Ecological implications of the zebra mussel. (Dreissena polymorpha), in the Great Lakes. Dr. Joseph Leach, Ontario Ministry of Natural Resources
10:20-10:45 AM	Coffee Break and Poster Viewing
10:45-11:10 AM	The status of the ruffe (Gymnocephalus cernuus) in Lake Superior. Mr. Dennis Pratt, Wisconsin Department of Natural Resources
11:10-11:35 AM	Lessons from the bitterling (Rhodeus sericeus) and status of the rudd (Scardinius erythrophthalmus) introductions in North America. Dr. Robert Schmidt, Simon's Rock College
11:35-12:00 PM	The sea lamprey (Petromyzon marinus), a review of an early invader. Mr. Thomas Jolliff, New York State Environmental Conservation
12:00-1:30 PM	Lunch (Owego \& New Bedford Rooms) Student Caucus \& Lunch (Admiral Clark Room)

FRIDAY AFTERNOON

	INVITED PAPER SESSION (CONTINUED) williamsburg Room Moderator - Paul McKeown
1:30- 1:55 PM	Colonization theory and morphological divergence of introduced populations. Dr. Jay Stauffer, Penn State
1:55- 2:20 PM	Effects of the brown tide on the Peconic Bay Ecosystem. Mr. Chris Smith, NYS Sea Grant
2:20- 2:45 PM	Range Expansion of selected fishes in New York watersheds. Dr. Robert Daniels, NYS Museum
2:45-3:10 PM	Future invasions of the Great Lakes by fish species associated with global warming. Mr. Nicholas Mandrak, Royal Ontario Museum
3:10-3:30 PM	Afternoon Break (Owego Room)
3:30-5:00 PM	NEW YORK CHAPTER BUSINESS MEETTNG Owego Room Jim Winter, Chapter President
5:00-7:30 PM	Social \& Buffet \& Raffle (Williamsburg Room) Organizer - Douglas Stang
	```POSTEER SESSION \\ Williamsburg Room \\ Organizer - Douglas Carlson```
10:00-5:30 PM	Posters Available for Viewing
10:20-10:45 AM	Authors Present at Posters
5:00-5:30 PM	

Friday, 26 January 1990

	POSTER SESSION Williamsburg Room
10:00-5:30 PM	Evaluation of monoclonal antibody-based ELISA for the diagnosis of Renibacterium salmoninarum. Hsu, H. M., P. R. Bowser, J. H. Schachte Jr.
	High efficiency-low cost egg and fry incubation systems for small experimental lots. Herren, D. W., C. Krueger, and B. May
	An aggregate historical comparison of the variability of $\mathrm{LC}_{50}$ values for two reference compounds and eight freshwater species.   Ewell, W. S., R. J. O'Boyle, and M. L. Ritter
	Habitat suitability index curves for stream dwelling juvenile brook trout in Northern New York State.   Jirka, K. J. and J. Homa Jr.
	Development of habitat suitability index curves for selected taxa of benthic macroinvertebrates using the Delphi Method.   Jirka, K. J. and J. Homa Jr.
	Remedial action planning in the Great Lakes Basin: An opportunity for fishery management interests. Landre, B. K. and B. A. Knuth
	Ichthyology Collection, New York State Museum. Daniels, R.

Saturday, 27 January 1990

9:00-11:40 AM	Contributed Paper Sessions I \& II   Organizer - Joseph Galati

Contributed Paper Session I - Owego Room
Moderator - Mark Malchoff
$9: 00-9: 20 \mathrm{AM}$
$9: 20-9: 40 \mathrm{AM}$
$9: 40-10: 00 \mathrm{AM}$

10:00-10:20 AM

10:20-10:40 AM

10:40-11:00 AM

11:00-11:20 AM

11:20-11:40 AM

Aspects of the life history of the comely shiner, Notropis amoenum (Abbott) in a southeastern New York stream. Thiesing, M. A. and G. Dale

Culture of fingerling walleye for introduction into Lake Ontario and potentially other appropriate public waters. Buttner, J. K. and D. B. MacNeill

Experimental treatment of Furunculosis with the Fluoroguinolone Enrofloxacin (Bayer). Bowser, P. R., J. H. Schachte, J. G. Babish, and G. A. Wooster

Optimal protocols for hyperthermal and hydrostatic pressure shock production of triploid brook and brown trout hybrids.
Herrin, D. W., C. Krueger, and B. May
Break (New Bedford Room)
A comparison of recovery, growth, movement, and distribution of young-of-year Assinica and Temiscamie strain brook trout stocked in small streams.
Vanoffelen, H. K., C. C. Krueger, and C. L. Schofield
The role of vegetation density and structure in the selection of refugia by juvenile sunfish. Kahn, A. E. and R. G. Werner

Using mitochondrial DNA for stock identification of lake trout.
Grewe, P. M., C. Krueger, E. Marsden, C. Aquadro, and B. May
TIME
Saturday, 27 January 1990


## 1990 Program Committee

```
Don Einhouse - Chairman, Program Committee
Doug Carlson - Poster Session
Joe Galati - Contributed Papers
Tom Heinrich - Photographer, Invited Speaker Transportation
Mark Malchoff - Registration
Paul McKeown - Arrangements
Doug Stang - Social & Raffle
```


## Moderators

Philip Hulbert - Contributed Paper Session II
David MacNeill - Invited Paper Session (AM)
Mark Malchoff - Contributed Paper Session I
Paul McKeown - Invited Paper Session (PM)

Judges

Dieter Busch
Robert Lange Niel Ringler Gaylord Rough

## 066T

SヨILIAIIJ甘 aN甘 SW甘צ90yd 7VNOISSヨヨ0yd d I HS y ヨ g W W




SINGINOD

ЭЭOYDTEW หมew pue uosixes bnod













xənṭy uospnh ut stossnu exqəz



ybinquaytonuen •ฮ

－K7țィт7onpoxd pue K7țsiəntp teqseoo pue っт7enbe uo पот7ерехбәр 7е7тqеч fo quәu －ssəsse uT s7səxə7ut ！surexбoxđ Kx7səコロ』
youred $\cdot 3$

－soyqueq punos puetsi buot ut s，god uo

 punos puetsi 6uot 947 10于 107 eutpaoos गヨ

бututes uoeaq szonpuos pue sətxəusti

 epourases •y

－surexboxa Kxetp xәтbue fo Iozeutpioos рие тиәшәбеиеш 7е7таеч＇7иәшәбеиеи
 －dnos $\ddagger 0$ soțureuKp uoţetndod ut 7sțeṭoəds pue səoxnosəy əuțxew ₹0 पот̣sṭṭ aч7

－sueadezsnaj pue ustfutca go neaxng әч7 чт̣ч7т̣ surexธoxd 7иәшәбеиеш pue








 Kəaduret eas butpntout 'səyei exnay pue
 - surexбoxd sasinosəy Texnzen qo uoţeutpioos
 sourtor •r


лечпбаел • 5




-seaxe Kiəsinu pue ธuṭueds Kysnu fo uotzeotiftuuppt pue
 uedet ${ }^{-S}$
 (əxnyooxg $\forall$ )

 7puȚTX * 8


- Kəッエns पST€

 uopios •g
-soṭxeznatuz oțxequo


SGONGIOS TVOIDOTOIG 30


## 


 DसODY1004：






pue yכaeasai axnłโn पsṭ дełemโoos

 qəitod papnizxa ue pue forp snioudsoud mot e paj sptuoures Kq（Kıәчэュeн）paonpoid snioudsoud pue spitos ətqeat77əs pue＇尹o
 －suotfipuos uotzonpoid Kıəчวzey iopun 72 Tp snioudsoud Mot e paj spịuoutes
 －（Epṭotuoutes seuourioz）sṭsotnouninj

əтエヲəd•「・コ


Ined－	－sureaizs uo sweibord toizuoo     
－wTs •日	－uoţeoṭf！ptoe otposṭda   07 suraits yoepuoitpy jo asuodsay  

[^0]



47nus •日


－səyer obeiepeued pue epteuo jo șt7



－sətpnłs uәasKsoja قyeq eptouo







MISIOATU TOULOD

－YIOK MON UT S6OIJ 7גеMə7S•山
－6utzəyxeu ssoy－s pue fuәwdotəィəp ssautsnq ainqtioenby
－zyef snsauos ut K7tieto
 77əyอnd •N
（•pues • 5 •W） xneaulosza －KOTTEW ・ヨ

## 

－stevturayo otxof 10j 6utioftuow teotbotota
：sətftunumoo uofyuetdooz pue vołyuetd

setreanqix otivequo əyer paettiw＇s ut पoţeieunue ssebjeo pue butcideaf ftous
（•pues＇s＇w）

（•pues •a• पd） uəuuəy－$\Gamma$
－sueaizs sayet qead ut K60towozue otfenbe ssetcieqnatiz otiequo


 （•pues－a• पd） uosuyor－$\Gamma$
－ә6eutedp euueyanbsns aył ut peys

> (•pues •a• पd)



TTEH ${ }^{\circ}$
－ssaifs pəzetəコーłueutuequo

－6uTtiəpow wə7sKsova
－səusty әyet
səust］әует eб́epuouo

 ［toIIed 「



səțIəusț

әует ebepuouo
axet ebepuouo fo sețe7nq！at
（•pues • $\sigma^{\cdot}$ पd）
Kyourd •\＆




səyen rabuta eut ut 7 nos ayet まo

 ut susetdoau zantt pue sewotitided snozuefnoojo jo（s）asnes a yq




yuอTuจS •כ


（реəчエəムт̧）


（реəчาวлт̣）

 ＿dotənəp XIzsnput 6utusţaiods puetsi 6uot
－uoțsueqxa quexo

（7Iodyooig）pue sensst aseq abeiof／pruoures＇słiofjo


eəs $\pi N$ 10j sensst foedut ainłonizsexjut
โəssnu eiqaz pue sansst aכinosal pue
（7IOdyロOI日）
LTTコN，O•〕

－sensst［efseoo ：uotfeonpa queu




> 1umiD baS y.iOX maN
－पeot loj atqettene tetiafeu ：पO！7วəTTOD पSTI wnesnu SxN əप7 $7^{\circ}$

 stetued •\＆





-Kiozeioqet butise7






 etKog, 0 •8





(Guțsuef) əset9 `W
(407019)
ezueqsoj ${ }^{\text {y }}$
(UM07127eM) uospreyoṭ - ${ }^{\text {® }}$

 pue quouriəィ'suoț quaupunoduI siəati a

 -әр spuetzam •suotienzontg โəsəi də7em quəupunodur •siəntil oțsooh pue дəseәg







- eəy utequnow titysfej
'6uty yols usta •uebtuotw'sianti uobaysnw (p10jue7s)



[^0]:    ựuowṭs •B

